An Integrated and Automated Workflow to Enhance Production Efficiency and Compliance in a Giant Offshore Field

2021 ◽  
Author(s):  
Wenyang Zhao ◽  
Salama Darwish Al Qubaisi ◽  
Salem Ali Al Kindi ◽  
Mohamed Helmy Al-Feky ◽  
Omar Yousef Al Shehhi ◽  
...  

Abstract Daily production compliance is fundamental to sustain reservoir management excellence and ultimately achieve an optimum oil recovery. The production activities execution is critical to adhere to the reservoir management guidelines and best practices. It is a more challenging task in brownfields due to the limitation of controlling system and limited access especially in offshore fields. A timely and efficient approach is undoubtedly necessary to enhance production efficiency and compliance. An integrated and automated tool has been innovated to analyze and report well production status against the guidelines and requirements in a mature offshore field with more than 50 years history. This systematic approach has been developed through integrating the planned rate, daily actual production rate, latest flow tests, and current well performance. Noncompliance is reported automatically on a user defined time scale, including daily, weekly, monthly or any customized time range within the month time. Daily violation report is generated automatically and sent to production operation for prompt adjustments and other requested actions. The automated workflow enables both daily production reporting and production compliance reporting. Daily production reporting is a routine work, which usually takes a lot of time every day. The workflow is capable of reducing 90% of the time comparing to the manual way. Production compliance reporting is currently mainly focusing on the comparison of actual production to planned rate and guideline rate. Any exception will be reported as violation. The violation dashboard summarizes the details based on the user selected time range. On daily basis, an email containing the violation details could be generated and sent to the corresponding teams for corrective actions. In this giant brown field, production GOR is a primary controlling parameter. The latest flow tests have been taken into account to evaluate the gas production compliance. Any violation to the GOR guidelines will be reported in the same communication email for timely correction. With the innovated tool, the violation ratio of the giant offshore field has been successfully reduced and controlled. The usual responding time for corrections has been dramatically reduced from months to days.

2021 ◽  
Author(s):  
Julieta Alvarez ◽  
Oswaldo Espinola ◽  
Luis Rodrigo Diaz ◽  
Lilith Cruces

Abstract Increase recovery from mature oil reservoirs requires the definition of enhanced reservoir management strategies, involving the implementation of advanced methodologies and technologies in the field's operation. This paper presents a digital workflow enabling the integration of commonly isolated elements such as: gauges, flowmeters, inflow control devices; analysis methods and data, used to improve scientific understanding of subsurface flow dynamics and determine improved operational decisions that support field's reservoir management strategy. It also supports evaluation of reservoir extent, hydraulic communication, artificial lift impact in the near-wellbore zone and reservoir response to injected fluids and coning phenomenon. This latest is used as an example to demonstrate the applicability of this workflow to improve and support operational decisions, minimizing water and gas production due to coning, that usually results in increasing production operation costs and it has a direct impact decreasing reservoir energy in mature saturated oil reservoirs. This innovative workflow consists on the continuous interpretation of data from downhole gauges, referred in this paper as data-driven; as well as analytical and numerical simulation methodologies using real-time raw data as an input, referred in this paper as model-driven, not commonly used to analyze near wellbore subsurface phenomena like coning and its impact in surface operation. The resulting analyses are displayed through an extensive visualization tool that provides instant insight to reservoir characterization and productivity groups, improving well and reservoir performance prediction capabilities for complex reservoirs such as mature saturated reservoirs with an associated aquifer, where undesired water and gas production is a continuous challenge that incorporates unexpected operational expenses.


2011 ◽  
Vol 51 (1) ◽  
pp. 577
Author(s):  
Fadi Ali ◽  
Hassan Bahrami ◽  
Po Chu Byfield ◽  
Jijin Mathew

Water breakthrough and the flow of water towards the perforations of a producing well increase production operation costs and influence overall recovery efficiency. To control water production, a downhole water sink can be used in which a well is completed in both oil and water zones. Water is produced from an interval in water zone, which can result in the same pressure drop below water oil contact (WOC) as the pressure drop created by oil or gas production. This system can reduce water production through oil zone perforations. Water produced from water zone perforations can then be injected in deeper aquifers intervals. This technology can also be implemented in horizontal and multi-lateral wells to further increase hydrocarbon recovery with fewer water problems. This study examines the use of horizontal downhole water sink technology to increase oil recovery. Numerical simulation is performed to optimise oil production and water control in a multi-layered oil reservoir, by optimising the direction of drilling and the downhole water sink method. Different scenarios of drilling direction and horizontal down-hole water sink method are examined to identify the option that provides maximum oil recovery. The simulation results showed that drilling horizontal wells in a north–south direction resulted in higher well productivity, and that wells with significantly more water production problems can be controlled using a horizontal downhole water sink.


2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2021 ◽  
Author(s):  
L. Hendraningrat

In low oil price environments, conducting affordable enhanced oil recovery (EOR) projects can be very challenging. One item of interest for successful future EOR should be in how produced fluids are treated and how to achieve cost-efficiency. Nanoflooding, is an emerging EOR technique, which has attracted deployment in recent years. Meanwhile, Indonesia continues to progress towards the national oil and gas production target of one million barrels per day by 2030. This paper presents the observation of opportunities and challenges of using nanoflooding to enable oil and gas production in Indonesia to achieve its desired targets. The study began by mapping the pain points in major oilfields in Indonesia. We observed and discussed the advantage and limitation of traditional mature EOR techniques, status, and ongoing application of EOR in Indonesia. Then, we briefly explained the main reasons why nanoflooding can be considered for future implementation in accelerating oil production in Indonesia, including a discussion about a successful pilot test. As an emerging EOR technique, nanoflooding can be considered as a cost-efficient technique. Silica-based nanofluid can be accessed in a cost-efficient manner and can be executed from an implementation standpoint considering surface facilities. The mechanism that is introduced can help to displace incremental oil more effectively since it can go inside pore throats due to the nano-size. We observed several recognized benefits and challenges to deploy nanoflooding in Indonesia. Based on this study, nanoflooding is very attractive and has potential to be implemented.


2021 ◽  
Author(s):  
Fernando Bermudez ◽  
Noor Al Nahhas ◽  
Hafsa Yazdani ◽  
Michael LeTan ◽  
Mohammed Shono

Abstract The objectives and Scope is to evaluate the feasibility of a Production Maximization algorithm for ESPs on unconventional wells using projected operating conditions instead of current ones, which authors expect will be crucial in adjusting the well deliverability to optimum frequencies on the rapidly changing conditions of tight oil wells. Actual production data for an unconventional well was used, covering from the start of Natural Flow production up to 120 days afterwards. Simulating what the production would be if a VFD running on IMP Optimization algorithms had been installed, new values for well flowing pressures were calculated, daily production scenarios were evaluated, and recommended operating frequencies were plotted. Result, observations, and conclusions: A. Using the Intelligent Maximum Production (IMP) algorithm allows maximum production from tight oil wells during the initial high production stage, and the prevention of gas-locking at later stages when gas production increases. B. The adjustment of frequency at later stages for GOR wells is key to maintaining maximum production while controlling free gas at the intake when compared against controlling the surface choke. Novel/additive information: The use of Electrical Submersible Pumps for the production of unconventional wells paired with the use of a VFD and properly designed control algorithms allows faster recovery of investment by pumping maximum allowable daily rates while constraining detrimental conditions such as free gas at the intake.


Author(s):  
Dr. Mohamed A. GH. Abdalsadig

As worldwide energy demand continues to grow, oil and gas fields have spent hundreds of billions of dollars to build the substructures of smart fields. Management of smart fields requires integrating knowledge and methods in order to automatically and autonomously handle a great frequency of real-time information streams gathered from those wells. Furthermore, oil businesses movement towards enhancing everyday production skills to meet global energy demands signifies the importance of adapting to the latest smart tools that assist them in running their daily work. A laboratory experiment was carried out to evaluate gas lift wells performance under realistic operations in determining reservoir pressure, production operation point, injection gas pressure, port size, and the influence of injection pressure on well performance. Lab VIEW software was used to determine gas passage through the Smart Gas Lift valve (SGL) for the real-time data gathering. The results showed that the wellhead pressure has a large influence on the gas lift performance and showed that the utilized smart gas lift valve can be used to enhanced gas Lift performance by regulating gas injection from down hole.


Author(s):  
B.M. Das ◽  
D. Dutta

Nanotechnology encompasses the science and technology of objects with sizes ranging from 1 nm to 100 nm. Today, exploration and production from conventional oil and gas wells have reached a stage of depletion. Newer technologies have been developed to address this problem. Maximum oil production at a minimum cost is currently a huge challenge. This paper reviews nanotechnology applications in the oil and gas production sector, including in the fields of exploration, drilling, production, and waste management in oil fields, as well as their environmental concerns. The paper reviews experimental observations carried out by various researchers in these fields. The effect of various nanoparticles, such as titanium oxide, magnesium oxide, zinc oxide, copper oxide, and carbon nanotubes in drilling fluids and silica nanoparticles in enhanced oil recovery, has been observed and studied. This paper gives a detailed review of the benefits of nanotechnology in oil exploration and production. The fusion of nanotechnology and petroleum technology can result in great benefits. The physics and chemistry of nanoparticles and nanostructures are very new to petroleum technology. Due to the greater risk associated with adapting new technology, nanotechnology has been slow to gain widespread acceptance in the oil and gas industries. However, the current economic conditions have become a driving force for newer technologies.


2016 ◽  
Author(s):  
R. Kumar ◽  
Foo Lee Sha ◽  
Nurul Asykin ◽  
Zaimi Salleh ◽  
Mohamad Othman

Sign in / Sign up

Export Citation Format

Share Document