Production optimisation and water control in oil/water producing wells using horizontal downhole water sink technology

2011 ◽  
Vol 51 (1) ◽  
pp. 577
Author(s):  
Fadi Ali ◽  
Hassan Bahrami ◽  
Po Chu Byfield ◽  
Jijin Mathew

Water breakthrough and the flow of water towards the perforations of a producing well increase production operation costs and influence overall recovery efficiency. To control water production, a downhole water sink can be used in which a well is completed in both oil and water zones. Water is produced from an interval in water zone, which can result in the same pressure drop below water oil contact (WOC) as the pressure drop created by oil or gas production. This system can reduce water production through oil zone perforations. Water produced from water zone perforations can then be injected in deeper aquifers intervals. This technology can also be implemented in horizontal and multi-lateral wells to further increase hydrocarbon recovery with fewer water problems. This study examines the use of horizontal downhole water sink technology to increase oil recovery. Numerical simulation is performed to optimise oil production and water control in a multi-layered oil reservoir, by optimising the direction of drilling and the downhole water sink method. Different scenarios of drilling direction and horizontal down-hole water sink method are examined to identify the option that provides maximum oil recovery. The simulation results showed that drilling horizontal wells in a north–south direction resulted in higher well productivity, and that wells with significantly more water production problems can be controlled using a horizontal downhole water sink.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ali Akbar Roozshenas ◽  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Hamid Esfandyari

Gas resources play a key role in nowadays energy supply and provide 24% of the diverse energy portfolio. Water encroachment is one of the main trapping mechanisms in gas reservoirs. It decreases recovery by reduction of reservoir life, limits productivity and efficiency of wells, and elevates safety risks in gas production. The lack of a comprehensive study about water production problems is the primary motivation for this study. Contrary to the serious concern over the standalone investigation of an actual water production case study, less concern is put to deal with the problem comprehensively through an investigation of all potential sources and mechanisms, required methods, and available techniques. This study presents the potential sources of the problem, methods to identify it, and approaches to address it. Firstly, possible sources are described. Secondly, the diagnostic techniques are expressed. Then, practical solutions used in actual cases to overcome problems are elaborated. The solutions include both well- and reservoir-oriented approaches. Finally, all proper strategies are summarized to tackle the water problems in gas fields. The current study comprehensively presents the available methods for water control problems in parallel with conceptual and qualitative comparison. The finding of this study can be very constructive for better understanding of water sources, available diagnostic tools, and solutions for controlling water production in gas reservoirs and, consequently, taking the best decision in real case studies before attempting many water shut-off approaches.


2021 ◽  
Author(s):  
Pongpak Taksaudom ◽  
Tim Kelly ◽  
Atisuda Meeteerawat ◽  
David Carter ◽  
Kannappan Swaminathan ◽  
...  

Abstract Wassana oil field is located in the Gulf of Thailand with shallow water depth at approximately 60m. A major challenge is excessive water production which reduces reserves recovery and increases costs associated with produced water handling. The target reservoir is ~20ft thick with active aquifer support. The low oil/ water mobility ratio due to high oil viscosity (≥ 30cp) risks early water coning and high watercuts. All horizontal wells drilled in the Wassana field during the initial development and the first infill campaign were completed as non-ICD openhole standalone screen. For the second infill campaign, the non-ICD simulation showed water breakthrough occurring at the start of production. Once breakthrough occurs, water production rapidly dominates production prompting premature shut-in of production, leaving much unrecovered oil behind. To overcome this problem, Autonomous Inflow Control Devices (AICDs) were introduced to control the production influx profile across the entire horizontal section to delay water coning and to significantly choke back water production when it occurs. With intensive pre-drilled AICD modeling using 3D dynamic time lapse simulation, two wells in the second infill campaign were subsequently chosen to be completed with a configuration of zonal AICDs isolated by swell packers. This design enables isolation across horizontal reservoir section with high water production in tandem with compartmentalization across the contrasting permeability region. Once water breakthrough occurs, the unique autonomous ability of the cyclonic AICD is triggered by exploiting the physics of rotational flow of the vortex-inducing pressure drop principle through a restrictive funnel-type flow-path in a tool with no moving parts. The low viscosity of both water and gas phase promotes higher rotational velocity inducing higher pressure drop or back-pressure of inflow vortex breakdown towards the inlet into the tubing flow, thus helping to further reduce the influx contribution of the high water producing sections. Essentially, the higher watercut zones flowing through the device is restricted more rigorously compared to the oil-prone zones. Both wells were successfully drilled and completed with AICDs in February 2019. Based on actual and early-production history-matched performance, these 2 pilot AICD wells are projecting an improved cumulative oil production gain of up to +7% over 5 years of production. The reduction or delay of water production can benefit the field both in enhancing oil recovery and water handling cost saving.


2022 ◽  
Author(s):  
Hashem Al-Obaid ◽  
Sultan A. Asel ◽  
Jon Hansen ◽  
Rio Wijaya

Abstract Many techniques have been used to model, diagnose and detect fracture dimension and propagation during hydraulic fracturing. Diagnosing fracture dimension growth vs time is of paramount importance to reach the desired geometry to maximize hydrocarbon production potential and prevent contacting undesired fluid zones. The study presented here describes a technique implemented to control vertical fracture growth in a tight sandstone formation being stimulated near a water zone. This gas well was completed vertically as openhole with Multi- Stage Fracturing (MSF). Pre-Fracturing diagnostic tests in combination with high-resolution temperature logs provided evidence of vertical fracture height growth downward toward water zone. Pre-fracturing flowback indicated water presence that was confirmed by lab test. Several actions were taken to mitigate fracture vertical growth during the placement of main treatment. An artificial barrier with proppant was placed in the lower zone of the reservoir before main fracturing execution. The rate and viscosity of fracturing fluids were also adjusted to control the net pressure aiming to enhance fracture length into the reservoir. The redesigned proppant fracturing job was placed into the formation as planned. Production results showed the effectiveness of the artificial lower barrier placed to prevent fracture vertical growth down into the water zone. Noise log consists of Sonic Noise Log (SNL) and High Precision Temperature (HPT) was performed. The log analysis indicated that two major fractures were initiated away from water-bearing zone with minimum water production. Additionally, in- situ minimum stress profile indicated no enough contrast between layers to help confine fracture into the targeted reservoir. Commercial gas production was achieved after applying this stimulation technique while keeping water production rate controlled within the desired range. The approach described in this paper to optimize gas production in tight formation with nearby water contact during hydraulic fracturing treatments has been applied with a significant improvement in well production. This will serve as reference for future intervention under same challenging completion conditions.


SPE Journal ◽  
2020 ◽  
pp. 1-15
Author(s):  
Gang Li ◽  
Lifeng Chen ◽  
Meilong Fu ◽  
Lei Wang ◽  
Yadong Chen ◽  
...  

Summary Horizontal wells that are completed with slotted liners often suffer from a severe water-production problem, which is detrimental to oil recovery. It is because the annulus between the slotted liners and wellbore cannot be fully filled with common hydrogels with poor thixotropy, which determines the ultimate hydrogel filling shape in the annulus. This paper presents a novel hydrogel with high thixotropy to effectively control water production in horizontal wells. This study is aimed at evaluating the thixotropic performance, gelation time, plugging performance, and degradation performance. The thixotropic performance of the new hydrogel was also investigated by measuring its rheological properties and examining its microstructures. It was found that the new hydrogel thickened rapidly after shearing. Its thixotropic recovery coefficient was 1.747, which was much higher than those of traditional hydrogels. The gelation time can be controlled in the range of 2 to 8 hours by properly adjusting the concentrations of the framework material, crosslinker, and initiator. The hydrogel could be customized for mature oil reservoirs, at which it was stable for more than 90 days. A series of laboratory physical modeling tests showed that the breakthrough pressure gradient and the plugging ratio of the hydrogel in sandpacks were higher than 9.5 MPa/m and 99%, respectively. At the same time, it was found that the hydrogel has good degradation properties; the viscosity of the hydrogel breaking solution was 4.22 mPa·s. Freeze-etching scanning-electron-microscopy examinations indicated that the hydrogel had a uniform grid structure, which can be broken easily by shear and restored quickly. This led to the remarkable thixotropic performance. The formation of a metastable structure caused by the electrostatic interaction and coordination effect was considered to be the primary reason for the high thixotropy. The successful development of the new thixotropic hydrogel not only helps to control water production from the horizontal wells, but also furthers the thixotropic theory of hydrogel. This study also provides technical guidelines for further increasing the thixotropies of drilling fluids, fracturing fluids, and other enhanced-oil-recovery polymers that are commonly used in the petroleum industry.


2012 ◽  
Vol 616-618 ◽  
pp. 870-876
Author(s):  
Zong Yu Li ◽  
Ai Zhang ◽  
Shi Sheng Xu ◽  
Yun Feng He

This paper takes Yakela-dalaoba edge water and the Luntai basal water condensate gas reservoir for example, analyzes the condensate gas reservoir of edge-water or basal-water production characteristics, water production law in development process, and summarizes the three kinds of type water production of condensate gas reservoir, and put forward water control countermeasures specific to different water production type. Set up four edge-water or basal-water breakthrough models of gas condensate wells and the corresponding control measures, and being applied to the water control of Ya-Da gas condensate wells water gradually and the control effect is remarkable. Through the research of water production law and control countermeasures in Ya-Da condensate gas reservoir, provide significant development guidance for the other condensate gas reservoir which contains water.


2021 ◽  
Author(s):  
Wenyang Zhao ◽  
Salama Darwish Al Qubaisi ◽  
Salem Ali Al Kindi ◽  
Mohamed Helmy Al-Feky ◽  
Omar Yousef Al Shehhi ◽  
...  

Abstract Daily production compliance is fundamental to sustain reservoir management excellence and ultimately achieve an optimum oil recovery. The production activities execution is critical to adhere to the reservoir management guidelines and best practices. It is a more challenging task in brownfields due to the limitation of controlling system and limited access especially in offshore fields. A timely and efficient approach is undoubtedly necessary to enhance production efficiency and compliance. An integrated and automated tool has been innovated to analyze and report well production status against the guidelines and requirements in a mature offshore field with more than 50 years history. This systematic approach has been developed through integrating the planned rate, daily actual production rate, latest flow tests, and current well performance. Noncompliance is reported automatically on a user defined time scale, including daily, weekly, monthly or any customized time range within the month time. Daily violation report is generated automatically and sent to production operation for prompt adjustments and other requested actions. The automated workflow enables both daily production reporting and production compliance reporting. Daily production reporting is a routine work, which usually takes a lot of time every day. The workflow is capable of reducing 90% of the time comparing to the manual way. Production compliance reporting is currently mainly focusing on the comparison of actual production to planned rate and guideline rate. Any exception will be reported as violation. The violation dashboard summarizes the details based on the user selected time range. On daily basis, an email containing the violation details could be generated and sent to the corresponding teams for corrective actions. In this giant brown field, production GOR is a primary controlling parameter. The latest flow tests have been taken into account to evaluate the gas production compliance. Any violation to the GOR guidelines will be reported in the same communication email for timely correction. With the innovated tool, the violation ratio of the giant offshore field has been successfully reduced and controlled. The usual responding time for corrections has been dramatically reduced from months to days.


2009 ◽  
Vol 131 (10) ◽  
Author(s):  
Ibrahim Sami Nashawi ◽  
Ealian H. Al-Anzi ◽  
Yousef S. Hashem

Water coning is one of the most serious problems encountered in active bottom-water drive reservoir. It increases the cost of production operations, reduces the efficiency of the depletion mechanism, and decreases the overall oil recovery. Therefore, preventive measures to curtail water coning damaging effects should be well delineated at the early stages of reservoir depletion. Production rate, mobility ratio, well completion design, and reservoir anisotropy are few of the major parameters influencing and promoting water coning. The objective of this paper is to develop a depletion strategy for an active bottom-water drive reservoir that would improve oil recovery, reduce water production due to coning, delay water breakthrough time, and pre-identify wells that are candidates to excessive water production. The proposed depletion strategy does not only take into consideration the reservoir conditions, but also the currently available surface production facilities and future development plan. Analytical methods are first used to obtain preliminary estimates of critical production rate and water breakthrough time, then comprehensive numerical investigation of the relevant parameters affecting water coning behavior is conducted using a single well 3D radial reservoir simulation model.


2021 ◽  
Author(s):  
Khalid Umar ◽  
Risal Rahman ◽  
Reyhan Hidayat ◽  
Pratika Siamsyah Kurniawati ◽  
Rantoe Marindha ◽  
...  

Abstract The objective of this paper is to present the Mechanical Water Shut-Off (MWSO) strategy for multilayer reservoirs on tubingless well. With 10 open perforated reservoirs and no selectivity option, isolation on water producing reservoir will be the main challenge since production is commingled throughout the lifetime of well. Regular production tests performed through a Multiphase Flowmeter equipment on each offshore platform is a first indicator to monitor the evolution of water production in a well. JM-X well has been experiencing water breakthrough since one week after initial perforation and WGR keep increasing following gas production decline. The strategy was initiated by conducting a bottom hole monitoring survey to identify water sources. Production Logging Tool (PLT) was used to precisely monitor pressure, temperature, water holdup, and fluid rate along the wellbore for further water source and production allocation analysis. Once the water source reservoirs have been identified, MWSO operation was requested. There are several types of MWSO equipment that are commonly used in Offshore Mahakam field each of which has selective economic consideration based on the expected well reserve. Considering operation difficulties and cost, MWSO program was made then will be monitored during the operation time to ensure the operation runs safely and smoothly. MWSO strategy on well JM-X was proven to be able to reduce water production from 900 bpd to only 20 bpd with a significant gain of gas production from 3 MMscfd to 9.2 MMscfd and oil production from 200 bpd to 750 bpd.


2013 ◽  
Vol 807-809 ◽  
pp. 2629-2633
Author(s):  
Guang Xi Shen ◽  
Ji Ho Lee ◽  
Kun Sang Lee

It is well known that gel treatment has outstanding potential to delay water breakthrough and reduce water production. However, it causes the decrease of oil production by permeability reduction, even though it is not as much as reduction of water production. For this reason, to improve oil production with substantial reduction of water production, performances of gel treatments through the combination of horizontal and/or vertical wells were assessed and compared. An extensive numerical simulation was executed for four different well configurations under gel treatment associated with waterflood to accomplish the purpose of this study. Performances were compared according to cumulative oil recovery and water-oil ratio at the production well for different systems. Though all of well configurations considered in this study effectively decreased the water production compared with waterflood, applications of horizontal wells led to much higher oil recovery than vertical well because of improved sweep efficiency. Based on these results, the potential of horizontal wells was examined through different scenarios in combinations of injection and production wells. Furthermore, various well lengths of injectors or producers were assessed for horizontal wells. Because cross-flow between layers dominates performance of gel treatment, effects of vertical permeability were also investigated in application of gel treatment with horizontal well. Longer wells and higher cross-flow results in better performance. This study represents that effectiveness of horizontal wells for gel treatment even for reservoirs having dominant cross-flow.


2021 ◽  
Author(s):  
Mahmoud Abd El-Fattah ◽  
Ahmed Moustafa Fahmy ◽  
Hamed Wahaibi ◽  
Abdullah Shibli ◽  
Khaled Zuhaimi

Abstract One of the largest oil fields in the GCC was developed in the 1960's. The field was initially produced under natural depletion supplemented by gas injection. The high offtake rates led to a rapid displacement of the gas/oil contact; thus, the field has now been suffering from early gas/water breakthrough and uneven fluid influx along with the horizontal wells. The reservoir has been on production for more than 50 years. Water/gas breakthrough from fractures being the major challenge which negatively affects wells oil production rates. Applying technology which can manage water/gas breakthrough in a cost-effective manner whilst allowing increased oil production was a key goal from operators in this field. Passive Inflow Control Devices (ICD) were introduced to the global oil and gas market in mid/late-1990's, and the first generation of Autonomous ICD (AICD) that can help reduce more unwanted gas or water was first installed in 2007. ICD's successfully demonstrated that they could delay the gas and/or water breakthrough within horizontal wells, but they could not choke gas when the coning/gas-breakthrough occurred and along with limited abilities to stop unwanted water production. To help solve this problem, the Autonomous Inflow Control Devices (AICD-RCP) with a movable disc was introduced to the market and demonstrated reduction of gas production by 20-30% with similar gains in oil production[1]. In this paper, the newest generation of Autonomous Inflow Control Valve (AICV) technology is presented. The AICV technology has a movable piston that can close and reduce the unwanted gas and water production by up to 95%[2]. The application of AICVs discussed herein were deployed within several wells which had extremely high Gas Oil Ratio (GOR) and low oil production. The novel AICV technology can differentiate between fluid types based on viscosity and density. When undesired fluid (gas and/or water) starts to be produced, the AICV chokes the valve flow area gradually until completely shutting off, all without well intervention[3]. Well production performances are documenting the benefits of installing AICV completions. The results demonstrate the AICVs closing the zones with high gas production and favoring oil-rich zones. Majority of evaluated wells demonstrated clearly that the extremely high GOR was reduced; some wells have returned to solution GOR for more than two years, and at the same time, the daily oil production is increased.


Sign in / Sign up

Export Citation Format

Share Document