Outcrop Analogues to Fractured Reservoirs, UAE

2021 ◽  
Author(s):  
Abdelwahab Noufal

Abstract Fractures were not the focus of reservoir studies in Abu Dhabi for the last decades, although its importance in enhancing production, as the general understanding considering fractures are not contributing to production. The fractured carbonate outcrops provide useful analogue observations, data and concepts to support subsurface hydrocarbon reservoir characterization from well and seismic data. The fracture orientation, size, porosity, length, spacing, crosscutting relationships, fracture density versus lithology and bed thickness and connectivity are difficult to measure directly from subsurface well and core data. The understanding of fracture formation and distribution and their effects on fluid flow has been greatly improved by the use of outcrop analogue data through the current work. This paper address the fracture geometry, kinematics and mechanical properties based on outcrops matching Abu Dhabi subsurface reservoir analogues. Integrating outcrop data with fracture orientation and fracture density from core and borehole image data, and seismic capturing fractures characteristics. The outcrop analogues constrain the uncertainty and developing new concepts in characterizing the interplay of rock matrix and fracture networks relevant to fluid flow and hydrocarbon recovery. Analysing the fractures with fracture lengths, aperture, spacing per each interval and relate them to the tectonic event are extracted strictly in the reservoir section. The results showing developed highly dipping shear fractures with short length, small spacing and bimodal aperture distribution that related to fracture orientation. Fracture porosity is dependent on size and controlled by lithology, bed thickness, paleostress and rock composition. Understanding fractures and their behaviour will optimize production greatly and they create exploration targets in otherwise tight reservoir zones, including under-explored sections.

Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. T79-T95 ◽  
Author(s):  
Peng Guo ◽  
George A. McMechan

Anisotropic attenuation in fluid-saturated reservoirs with high fracture density may be diagnostic for reservoir characterization. Wave-induced mesoscale fluid flow is considered to be the major cause of intrinsic attenuation at exploration seismic frequencies. We perform tests of the sensitivity, of anisotropic attenuation and velocity, to reservoir properties in fractured HTI media based on the mesoscale fluid flow attenuation mechanism. The viscoelastic T-matrix, a unified effective medium theory of global and local fluid flow mechanisms, is used to compute frequency-dependent anisotropic attenuation and velocity for ranges of reservoir properties, including fracture density, orientation, fracture aspect ratio, fluid type, and permeability. The 3D 3C staggered-grid finite-difference anisotropic viscoelastic modeling with a Crank-Nicolson scheme is used to generate seismograms using the frequency-dependent velocity and attenuation computed by the viscoelastic T-matrix. A standard linear solid model relates the stress and strain relaxation times to the frequency-dependent attenuation, in the relaxation mechanism equation. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Velocity becomes more sensitive to the fracture aspect ratio when considering fluid flow compared with when the fluid is isolated. Anisotropy of attenuation affects 3C viscoelastic seismic data more strongly than velocity anisotropy does. Analysis of the influence of reservoir properties, on seismic properties in mesoscale fluid-saturated fractured reservoirs with high fracture density, suggests that anisotropic attenuation is a potential tool for reservoir characterization.


Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 699-707 ◽  
Author(s):  
Andrés Pech ◽  
Ilya Tsvankin

Interpretation and inversion of azimuthally varying nonhyperbolic reflection moveout requires accounting for both velocity anisotropy and subsurface structure. Here, our previously derived exact expression for the quartic moveout coefficient A4 is applied to P‐wave reflections from a dipping interface overlaid by a medium of orthorhombic symmetry. The weak‐anisotropy approximaton for the coefficient A4 in a homogeneous orthorhombic layer is controlled by the anellipticity parameters η(1), η(2), and η(3), which are responsible for time processing of P‐wave data. If the dip plane of the reflector coincides with the vertical symmetry plane [x1, x3], A4 on the dip line is proportional to the in‐plane anellipticity parameter η(2) and always changes sign for a dip of 30○. The quartic coefficient on the strike line is a function of all three η–parameters, but for mild dips it is mostly governed by η(1)—the parameter defined in the incidence plane [x2, x3]. Whereas the magnitude of the dip line A4 typically becomes small for dips exceeding 45○, the nonhyperbolic moveout on the strike line may remain significant even for subvertical reflectors. The character of the azimuthal variation of A4 depends on reflector dip and is quite sensitive to the signs and relative magnitudes of η(1), η(2), and η(3). The analytic results and numerical modeling show that the azimuthal pattern of the quartic coefficient can contain multiple lobes, with one or two azimuths of vanishing A4 between the dip and strike directions. The strong influence of the anellipticity parameters on the azimuthally varying coefficient A4 suggests that nonhyperbolic moveout recorded in wide‐azimuth surveys can help to constrain the anisotropic velocity field. Since for typical orthorhombic models that describe naturally fractured reservoirs the parameters η(1,2,3) are closely related to the fracture density and infill, the results of azimuthal nonhyperbolic moveout analysis can also be used in reservoir characterization.


2014 ◽  
Vol 197 (2) ◽  
pp. 943-947 ◽  
Author(s):  
Kelvin Amalokwu ◽  
Angus I. Best ◽  
Jeremy Sothcott ◽  
Mark Chapman ◽  
Tim Minshull ◽  
...  

Abstract Elastic wave attenuation anisotropy in porous rocks with aligned fractures is of interest to seismic remote sensing of the Earth's structure and to hydrocarbon reservoir characterization in particular. We investigated the effect of partial water saturation on attenuation in fractured rocks in the laboratory by conducting ultrasonic pulse-echo measurements on synthetic, silica-cemented, sandstones with aligned penny-shaped voids (fracture density of 0.0298 ± 0.0077), chosen to simulate the effect of natural fractures in the Earth according to theoretical models. Our results show, for the first time, contrasting variations in the attenuation (Q−1) of P and S waves with water saturation in samples with and without fractures. The observed Qs/Qp ratios are indicative of saturation state and the presence or absence of fractures, offering an important new possibility for remote fluid detection and characterization.


2020 ◽  
Vol 224 (3) ◽  
pp. 1670-1683
Author(s):  
Liming Zhao ◽  
Genyang Tang ◽  
Chao Sun ◽  
Jianguo Zhao ◽  
Shangxu Wang

SUMMARY We conducted stress–strain oscillation experiments on dry and partially oil-saturated Fontainebleau sandstone samples over the 1–2000 Hz band at different confining pressures to investigate the wave-induced fluid flow (WIFF) at mesoscopic and microscopic scales and their interaction. Three tested rock samples have similar porosity between 6 and 7 per cent and were partially saturated to different degrees with different oils. The measurement results exhibit a single or two attenuation peaks that are affected by the saturation degree, oil viscosity and confining pressure. One peak, exhibited by all samples, shifts to lower frequencies with increasing pressure, and is mainly attributed to grain contact- or microcrack-related squirt flow based on modelling of its characteristics and comparison with other experiment results for sandstones. The other peak is present at smaller frequencies and shifts to higher frequencies as the confining pressure increases, showing an opposite pressure dependence. This contrast is interpreted as the result of fluid flow patterns at different scales. We developed a dual-scale fluid flow model by incorporating the squirt flow effect into the patchy saturation model, which accounts for the interaction of WIFFs at microscopic and mesoscopic scales. This model provides a reasonable interpretation of the measurement results. Our broad-frequency-band measurements give physical evidence of WIFFs co-existing at two different scales, and combining with modelling results, it suggests that the WIFF mechanisms, related to pore microstructure and fluid distribution, interplay with each other and jointly control seismic attenuation and dispersion at reservoir conditions. These observations and modelling results are useful for quantitative seismic interpretation and reservoir characterization, specifically they have potential applications in time-lapse seismic analysis, fluid prediction and reservoir monitoring.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Miller Zambrano ◽  
Alan D. Pitts ◽  
Ali Salama ◽  
Tiziano Volatili ◽  
Maurizio Giorgioni ◽  
...  

Fluid flow through a single fracture is traditionally described by the cubic law, which is derived from the Navier-Stokes equation for the flow of an incompressible fluid between two smooth-parallel plates. Thus, the permeability of a single fracture depends only on the so-called hydraulic aperture which differs from the mechanical aperture (separation between the two fracture wall surfaces). This difference is mainly related to the roughness of the fracture walls, which has been evaluated in previous works by including a friction factor in the permeability equation or directly deriving the hydraulic aperture. However, these methodologies may lack adequate precision to provide valid results. This work presents a complete protocol for fracture surface mapping, roughness evaluation, fracture modeling, fluid flow simulation, and permeability estimation of individual fracture (open or sheared joint/pressure solution seam). The methodology includes laboratory-based high-resolution structure from motion (SfM) photogrammetry of fracture surfaces, power spectral density (PSD) surface evaluation, synthetic fracture modeling, and fluid flow simulation using the Lattice-Boltzmann method. This work evaluates the respective controls on permeability exerted by the fracture displacement (perpendicular and parallel to the fracture walls), surface roughness, and surface pair mismatch. The results may contribute to defining a more accurate equation of hydraulic aperture and permeability of single fractures, which represents a pillar for the modeling and upscaling of the hydraulic properties of a geofluid reservoir.


2018 ◽  
Vol 6 (1) ◽  
pp. SC29-SC41 ◽  
Author(s):  
Sayantan Ghosh ◽  
John N. Hooker ◽  
Caleb P. Bontempi ◽  
Roger M. Slatt

Natural fracture aperture-size, spacing, and stratigraphic variation in fracture density are factors determining the fluid-flow capacity of low-permeability formations. In this study, several facies were identified in a Woodford Shale complete section. The section was divided into four broad stratigraphic zones based on interbedding of similar facies. Average thicknesses and percentages of brittle and ductile beds in each stratigraphic foot were recorded. Also, five fracture sets were identified. These sets were split into two groups based on their trace exposures. Fracture linear intensity (number of fractures normalized to the scanline length [[Formula: see text]]) values were quantified for brittle and ductile beds. Individual fracture intensity-bed thickness linear equations were derived. These equations, along with the average bed thickness and percentage of brittle and ductile lithologies in each stratigraphic foot, were used to construct a fracture areal density (number of fracture traces normalized to the trace exposure area [[Formula: see text]]) profile. Finally, the fracture opening-displacement size variations, clustering tendencies, and fracture saturation were quantified. Fracture intensity-bed thickness equations predict approximately 1.5–3 times more fractures in the brittle beds compared with ductile beds at any given bed thickness. Parts of zone 2 and almost entire zone 3, located in the upper and middle Woodford, respectively, have high fracture densities and are situated within relatively organic-rich (high-GR) intervals. These intervals may be suitable horizontal well landing targets. All observed fracture cement exhibit a lack of crack-seal texture. Characteristic aperture-size distributions exist, with most apertures in the 0.05–1 mm (0.00016–0.0032 ft) range. In the chert beds, fracture cement is primarily bitumen or silica or both. Fractures in dolomite beds primarily have calcite cement. The average fracture spacing indices (i.e., bed thickness-fracture spacing ratio) in brittle and ductile beds were determined to be 2 and 1.2, respectively. Uniform fracture spacing was observed along all scanlines in the studied beds.


Sign in / Sign up

Export Citation Format

Share Document