Laboratory and Field Evaluation of Aqueous Retarded Acid System for Carbonate Gas Field, Offshore Borneo Island

2021 ◽  
Author(s):  
Tenamutha Ravichandran ◽  
Sulaiman Sidek ◽  
Ahmed Nabil Zakaria ◽  
Karim Ahmed Shata ◽  
Zool Nasri Sapiee ◽  
...  

Abstract Objectives, Scope This paper provides valuable insights on aqueous retarded acid system evaluation based on laboratory testing, literature review and engineering analysis prior to the field application for a candidate well in a gas field, offshore East Malaysia (Figure 1). The field is a reefal carbonates build-up overlayed by a thick shale sequence and is one of the deepest fields in Sarawak Asset, in which the produced fluid contains up to 3,500ppm H2S, 20% CO2 and bottomhole temperature up to 288°F. Production enhancement for this carbonate reservoir requires application of a more effective approach to address challenges associated with acid placement and reservoir contact in long pay zones of complex diagenetic facies high temperature carbonate reservoirs, thereby improving return on investment. Figure 1Structural map of Central Luconia carbonate platform offshore Sarawak, Malaysia (Janjuhah et al. 2016) Methods, Procedures, Process The workflow adopted for the stimulation job involves thorough historical production data analysis, detail petrophysical review to evaluate reservoir properties, in-depth production performance analysis (i.e. nodal and network modeling), completion review to ascertain damage mechanism and economic evaluation that include decision risk analysis to evaluate all range of probabilistic outcome. Initial selection of stimulation fluids was based on the mineralogical composition of the main producing formation. A detailed study of reservoir rock and its reaction to various acid systems has been based upon software modeling where sensitivity analyses involving multiple treatment schedule scenarios incorporating various acid and diverter fluid systems are considered. Coreflood experiment was then performed to determine the Pore Volume to Breakthrough (PVBT) comparing emulsified acid with aqueous retarded acid at temperature of 250°F, injection rate of 3ml/min and at confining pressure of 1,500psi. The low PVBT values (i.e. 1.125 and 0.521) and unique breakthrough features obtained from the coreflood confirmed that aqueous retarded acid is effective to stimulate the carbonate reservoir. Compatibility testing was also conducted to assess the stability of the retarded acid recipes and potential reaction with reservoir fluids (i.e. water and condensate), downhole completion and surface equipment. Results, Observation, Conclusion An established stimulation software was used to refine the acid volume calculation and placement analysis. Field trial was made using combined application of the aqueous retarded acid and viscoelastic diverting acid. Considering several case scenarios, the remedial treatment was performed via bullheading to achieve optimum injection rate within 5bpm to 7bpm. Total of 197bbls acid and 197bbls diverter was be pumped during the treatment that will be split in several stages to achieve average invasion profile of 2.8ft and -1.3 skin value. This paper presents aqueous retarded acid system as alternative to widely used emulsified acid systems. Field application of the approach supports the theoretical findings based on substantial improvement in well production, pressure matching of the remedial treatment and calibrated nodal analysis assessment. This demonstrates the value of holistic approach of laboratory testing, comprehensive software modeling and application of enhanced stimulation fluids to overcome complex technical challenges Novel, Additive Information The field production was previously constrained by its high CO2 levels and the supply gas ratio agreement. The information and lessons learnt from this paper will be applicable as evident of practical improvements to achieve sustainable production from the field since it has a strategic importance as production, processing and export hub to other four gas fields. Recent CO2 blending project has allow a better distribution of gas across the network and therefore demand higher production from the field, thus further unlock it potential to achieve economic optimization.

SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 907-924 ◽  
Author(s):  
Lijun Liu ◽  
Zhaoqin Huang ◽  
Jun Yao ◽  
Yuan Di ◽  
Yu-Shu Wu

Summary Fractured vuggy reservoir is a typical type of carbonate reservoir. The 3D complex fracture networks and Stokes flow inside vugs make fractured vuggy reservoir simulation remain a challenging problem. Most of the proposed models in previous studies are computation consuming, which cannot meet with the demand of field application. In this paper, a novel and efficient hybrid model, consisting of a modified embedded discrete fracture model (EDFM) and a vug model, is proposed to simulate multiphase flow in 3D complex fractured vuggy reservoirs. The modified EDFM improves the fracture-discretization process by using two sets of independent grids for matrix and fracture systems, which promotes the modeling of 3D complex fractures in real geological structures. Meanwhile, the vug model simplifies the coupled porous-free flow with the assumption of multiphase instantaneous gravity differentiation. The accuracy of the modified EDFM and the vug model is demonstrated by comparing the results with those of the conventional EDFM and volume of fluid (VOF) method. After that, a series of case studies, including three conceptual fracture-vug unit models and a real field model, have been conducted to test the proposed hybrid model. The results of the three fracture-vug unit models indicate the significant effect of a local fracture-vug structure on the flow characteristics and production performance. Finally, the application with a real field model with 3D complex fracture and vug geometries further verifies the practicability of our proposed model in real fractured vuggy reservoirs.


2021 ◽  
pp. 014459872199465
Author(s):  
Yuhui Zhou ◽  
Sheng Lei ◽  
Xuebiao Du ◽  
Shichang Ju ◽  
Wei Li

Carbonate reservoirs are highly heterogeneous. During waterflooding stage, the channeling phenomenon of displacing fluid in high-permeability layers easily leads to early water breakthrough and high water-cut with low recovery rate. To quantitatively characterize the inter-well connectivity parameters (including conductivity and connected volume), we developed an inter-well connectivity model based on the principle of inter-well connectivity and the geological data and development performance of carbonate reservoirs. Thus, the planar water injection allocation factors and water injection utilization rate of different layers can be obtained. In addition, when the proposed model is integrated with automatic history matching method and production optimization algorithm, the real-time oil and water production can be optimized and predicted. Field application demonstrates that adjusting injection parameters based on the model outputs results in a 1.5% increase in annual oil production, which offers significant guidance for the efficient development of similar oil reservoirs. In this study, the connectivity method was applied to multi-layer real reservoirs for the first time, and the injection and production volume of injection-production wells were repeatedly updated based on multiple iterations of water injection efficiency. The correctness of the method was verified by conceptual calculations and then applied to real reservoirs. So that the oil field can increase production in a short time, and has good application value.


2021 ◽  
Vol 13 (1) ◽  
pp. 122-129
Author(s):  
Kaiyuan Liu ◽  
Li Qin ◽  
Xi Zhang ◽  
Liting Liu ◽  
Furong Wu ◽  
...  

Abstract Carbonate rocks frequently exhibit less predictable seismic attribute–porosity relationships because of complex and heterogeneous pore geometry. Pore geometry plays an important role in carbonate reservoir interpretation, as it influences acoustic and elastic characters. So in porosity prediction of carbonate reservoirs, pore geometry should be considered as a factor. Thus, based on Gassmann’s equation and Eshelby–Walsh ellipsoidal inclusion theory, we introduced a parameter C to stand by pore geometry and then deduced a porosity calculating expression from compressional expression of Gassmann’s equation. In this article, we present a porosity working flow as well as calculate methods of every parameter needed in the porosity inverting equation. From well testing and field application, it proves that the high-accuracy method is suitable for carbonate reservoirs.


2012 ◽  
Vol 450-451 ◽  
pp. 1536-1539
Author(s):  
Cui Ping Nie ◽  
Deng Sheng Ye

Abstract: Usually we pay more attention on how to improve gas well cementing quality in engineering design and field operations, and there are so many studies on cement agents but few researches on cement slurry injection technology. The field practice proved that conventional cementing technology can not ensure the cementing quality especially in gas well and some abnormal pressure wells. Most of the study is concentrated on cement agents and some cementing aspects such as wellbore condition, casing centralization etc. All the factors analysis on cementing quality has pointed out that a combination of good agents and suitable measurements can improve cementing quality effectively. The essential factor in cementing is to enhance the displacement efficiency, but normal hole condition and casing centralization are the fundamental for cementing only. Pulsing cementing is the technology that it can improve the displacement efficiency especially in reservoir well interval, also it can shorten the period from initial to ultimate setting time for cement slurry or improve thickening characteristics, and then to inhibit the potential gas or water channeling. Based on systematically research, aiming at improving in 7″ liner cementing, where there are multi gas reservoirs in long interval in SiChuan special gas field, well was completed with upper 7″ liner and down lower 5″ liner, poor cementing bonding before this time. So we stressed on the study of a downhole low frequency self-excited hydraulic oscillation pulsing cementing drillable device and its application, its successful field utilization proved that it is an innovative tool, and it can improve cementing quality obviously.


2021 ◽  
Author(s):  
Mojtaba Moradi ◽  
Michael R Konopczynski

Abstract Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.


2019 ◽  
Vol 8 (4) ◽  
pp. 1484-1489

Reservoir performance prediction is important aspect of the oil & gas field development planning and reserves estimation which depicts the behavior of the reservoir in the future. Reservoir production success is dependent on precise illustration of reservoir rock properties, reservoir fluid properties, rock-fluid properties and reservoir flow performance. Petroleum engineers must have sound knowledge of the reservoir attributes, production operation optimization and more significant, to develop an analytical model that will adequately describe the physical processes which take place in the reservoir. Reservoir performance prediction based on material balance equation which is described by Several Authors such as Muskat, Craft and Hawkins, Tarner’s, Havlena & odeh, Tracy’s and Schilthuis. This paper compares estimation of reserve using dynamic simulation in MBAL software and predictive material balance method after history matching of both of this model. Results from this paper shows functionality of MBAL in terms of history matching and performance prediction. This paper objective is to set up the basic reservoir model, various models and algorithms for each technique are presented and validated with the case studies. Field data collected related to PVT analysis, Production and well data for quality check based on determining inconsistencies between data and physical reality with the help of correlations. Further this paper shows history matching to match original oil in place and aquifer size. In the end conclusion obtained from different plots between various parameters reflect the result in history match data, simulation result and Future performance of the reservoir system and observation of these results represent similar simulation and future prediction plots result.


2018 ◽  
Vol 123 (7) ◽  
pp. 5929-5944 ◽  
Author(s):  
Lanlan Tang ◽  
Zhou Lu ◽  
Miao Zhang ◽  
Li Sun ◽  
Lianxing Wen

2021 ◽  
Vol 73 (01) ◽  
pp. 20-22
Author(s):  
Trent Jacobs

In the midst of an industry downturn last year, the Abu Dhabi National Oil Company (ADNOC) reached a new oil production ceiling of 4 million B/D. The UAE’s largest producer has no intentions of slowing down. By decade’s end, ADNOC expects to have raised its maximum daily output by another million barrels. To cross that milestone, the company has set its sights on mastering the tight, thin, and unconventional formations that dot the UAE’s subsurface landscape. One of the places where such developments are hoped to unfold soon is known as Field Q. Found in southeastern Abu Dhabi, Field Q sits above a tight carbonate reservoir that holds an estimated 600 million bbl of oil. But with a permeability ranging from 1 to 3 millidarcy and poor vertical communication, the reservoir and its barrels have proven difficult to cultivate economically - until recently. ADNOC has published new details of its first onshore pilot of a “fishbone stimulation” that involved using more than a hundred hollow needles to pierce as far as 40 ft into the reservoir rock. The additional drainage netted by the fishbone needles boosted production threefold in the test well, as compared with its traditionally completed neighbors on the same pad. ADNOC ran the pilot in the summer of 2019 and by the end of the year saw enough production data to launch a wider 10-well pilot that remains underway. Based on a longer-term data set from these wells, the company will decide whether to leap into a fieldwide deployment of the niche completions technology. In the meantime, the petrotechnical team in charge of the test projects have issued roundly positive reviews of the fishbone technique in two recently presented technical papers (SPE 202636; SPE 203086) from the Abu Dhabi International Petroleum Exhibition & Conference (ADIPEC). “There is a chance that the fishbone-stimulated wells can avoid the drilling of multiple wells targeting different sublayers in the same zone,” said Rama Rao Rachapudi, listing one of several of the technology’s advantages over other approaches that were considered. The senior petroleum engineer with ADNOC, who is one of several authors of the papers that cover both the drilling and completions aspects of the pilot, shared during ADIPEC that his onshore team found motivation to test the technology after bringing in a batch of dis-mal appraisal wells. The fishbone system, also known as multilateral jetting stimulation technology, has been a specialized application ever since it was introduced just over a decade ago. Underscoring the potential impact of the current round of pilots on the technology’s adoption rate, ADNOC noted there were only around 30 worldwide fishbone deployments prior to this project. Most of those have been in the Middle East’s naturally fractured and layered carbonate formations - just like those of Field Q.


Sign in / Sign up

Export Citation Format

Share Document