Research and application of seismic porosity inversion method for carbonate reservoir based on Gassmann’s equation

2021 ◽  
Vol 13 (1) ◽  
pp. 122-129
Author(s):  
Kaiyuan Liu ◽  
Li Qin ◽  
Xi Zhang ◽  
Liting Liu ◽  
Furong Wu ◽  
...  

Abstract Carbonate rocks frequently exhibit less predictable seismic attribute–porosity relationships because of complex and heterogeneous pore geometry. Pore geometry plays an important role in carbonate reservoir interpretation, as it influences acoustic and elastic characters. So in porosity prediction of carbonate reservoirs, pore geometry should be considered as a factor. Thus, based on Gassmann’s equation and Eshelby–Walsh ellipsoidal inclusion theory, we introduced a parameter C to stand by pore geometry and then deduced a porosity calculating expression from compressional expression of Gassmann’s equation. In this article, we present a porosity working flow as well as calculate methods of every parameter needed in the porosity inverting equation. From well testing and field application, it proves that the high-accuracy method is suitable for carbonate reservoirs.

2021 ◽  
pp. 014459872199465
Author(s):  
Yuhui Zhou ◽  
Sheng Lei ◽  
Xuebiao Du ◽  
Shichang Ju ◽  
Wei Li

Carbonate reservoirs are highly heterogeneous. During waterflooding stage, the channeling phenomenon of displacing fluid in high-permeability layers easily leads to early water breakthrough and high water-cut with low recovery rate. To quantitatively characterize the inter-well connectivity parameters (including conductivity and connected volume), we developed an inter-well connectivity model based on the principle of inter-well connectivity and the geological data and development performance of carbonate reservoirs. Thus, the planar water injection allocation factors and water injection utilization rate of different layers can be obtained. In addition, when the proposed model is integrated with automatic history matching method and production optimization algorithm, the real-time oil and water production can be optimized and predicted. Field application demonstrates that adjusting injection parameters based on the model outputs results in a 1.5% increase in annual oil production, which offers significant guidance for the efficient development of similar oil reservoirs. In this study, the connectivity method was applied to multi-layer real reservoirs for the first time, and the injection and production volume of injection-production wells were repeatedly updated based on multiple iterations of water injection efficiency. The correctness of the method was verified by conceptual calculations and then applied to real reservoirs. So that the oil field can increase production in a short time, and has good application value.


2014 ◽  
Vol 32 (4) ◽  
pp. 695 ◽  
Author(s):  
Maria Gabriela Castillo Vincentelli ◽  
Sergio Antonio Caceres Contreras ◽  
Michelle Uchoa Chaves

ABSTRACT. The current research is based on volumetric seismic interpretation with the aim to visualize the main Albian carbonate reservoirs in shallow, deepand ultra-deep water of the continental Brazilian basins (Santos, Campos and Espírito Santo). It is expected that the method assists geoscientists in order to definecarbonate reservoirs with less geological uncertainty, when compared with the response obtained from the traditional seismic interpretation. The objective proposesa quickly, but confident, methodology to better define Albian carbonates using seismic attribute extraction. To achieve this goal, 25 seismic volumetric and surfaceattributes were analyzed; it was observed that it is possible to visualize the reservoir in most of them, mainly when the acoustic impedance (AI) is included on the analysis. For all the considered oil fields the sweetness attribute presented the best carbonate reservoir visualization and using sweetness any previous seismic interpretation isnecessary. In conclusion, the sweetness attribute allowed the interpretation of the Albian carbonates reservoirs in the Brazilian basins in a short period of time and withless geometrical uncertainty. Due to this fact, is possible to enforce that the method can be applied for seismic characterization of any geological feature that showschanges in its density in comparison with the surrounding stratigraphic layers.Keywords: volumetric interpretation, instantaneous frequency, instantaneous amplitude, envelope, limestone reservoirs.RESUMO. A presente pesquisa é baseada na interpretação sísmica volumétrica com o intuito de visualizar os principais reservatórios de hidrocarboneto do Albianoem águas rasas, profundas e ultraprofundas das bacias da margem continental brasileira (Santos, Campos e Espírito Santo). É esperado que o resultado auxiliegeocientistas na definição de reservatórios carbonáticos com menor incerteza geológica, quando comparado com a resposta obtida numa interpretação sísmica tradicional.O objetivo propõe um método rápido e confiável que melhor defina os reservatórios carbonáticos do Albiano por meio da extração de atributos sísmicos. Para alcançar esta meta, 25 atributos sísmicos volumétricos e de superfície foram analisados, na maioria deles é possível visualizar o reservatório, principalmente quando aimpedância acústica (AI) é incluída na análise. Para todos os campos de hidrocarboneto avaliados o atributo sweetness apresentou a melhor visualização do reservatório carbonático, sendo que para aplicar sweetness não é necessária uma interpretação sísmica prévia. Em conclusão, o sweetness permitiu a interpretação de reservatórios carbonáticos albianos nas bacias brasileiras em um curto período de tempo e com menor incerteza geométrica da distribuição do mesmo. Devido a isso, o método podeser aplicado para a caracterização sísmica de feições geológicas que apresentem mudanças em sua densidade em relação às camadas estratigráficas ao redor.Palavras-chave: interpretação volumétrica, frequência instantânea, amplitude instantânea, envelope, reservatórios carbonáticos.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 21-31
Author(s):  
Fatimah Miharno

ABSTRACT*Zefara* Field formation Baturaja on South Sumatra Basin is a reservoir carbonate and prospective gas. Data used in this research were 3D seismik data, well logs, and geological information. According to geological report known that hidrocarbon traps in research area were limestone lithological layer as stratigraphical trap and faulted anticline as structural trap. The study restricted in effort to make a hydrocarbon accumulation and a potential carbonate reservoir area maps with seismic attribute. All of the data used in this study are 3D seismic data set, well-log data and check-shot data. The result of the analysis are compared to the result derived from log data calculation as a control analysis. Hydrocarbon prospect area generated from seismic attribute and are divided into three compartments. The seismic attribute analysis using RMS amplitude method and instantaneous frequency is very effective to determine hydrocarbon accumulation in *Zefara* field, because low amplitude from Baturaja reservoir. Low amplitude hints low AI, determined high porosity and high hydrocarbon contact (HC).  Keyword: Baturaja Formation, RMS amplitude seismic attribute, instantaneous frequency seismic attribute


2011 ◽  
Author(s):  
Lifeng Liu ◽  
Sam Zandong Sun ◽  
Haiyang Wang ◽  
Haijun Yang ◽  
Jianfa Han ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haitao Zhang ◽  
Guangquan Xu ◽  
Mancai Liu ◽  
Minhua Wang

AbstractWith the reduction of oil and gas reserves and the increase of mining difficulty in Northern China, the carbonate rocks in Southern North China Basin are becoming a significant exploration target for carbonate reservoirs. However, the development characteristics, formation stages, formation environments and mechanisms of the carbonate reservoirs in Southern North China Basin are still unclear, which caused the failures of many oil and gas exploration wells. This study focused on addressing this unsolved issue from the Ordovician carbonate paleokarst in the Huai-Fu Basin, which is located in the southeast of Southern North China Basin and one of the key areas for oil and gas exploration. Based on petrology, mineralogy and geochemical data, pore types, distribution characteristics, and formation stages of the Ordovician paleokarst were analyzed. Then, in attempt to define the origins of porosity development, the formation environments and mechanisms were illustrated. The results of this study showed that pore types of the Ordovician carbonates in the Huai-Fu Basin are mainly composed of intragranular pores, intercrystalline (intergranular) pores, dissolution pores (vugs), fractures, channels, and caves, which are usually in fault and fold zones and paleoweathering crust. Furthermore, five stages and five formation environments of the Ordovician paleokarst were identified. Syngenetic karst, eogenetic karst, and paleoweathering crust karst were all developed in a relatively open near-surface environment, and their formations are mainly related to meteoric water dissolution. Mesogenetic karst was developed in a closed buried environment, and its formation is mainly related to the diagenesis of organic matters and thermochemical sulfate reduction in the Permian-Carboniferous strata. Hydrothermal (water) karst was developed in a deep-buried and high-temperature environment, where hydrothermal fluids (waters) migrated upward through structures such as faults and fractures to dissolve carbonate rocks and simultaneously deposited hydrothermal minerals and calcites. Lastly, a paleokarst evolution model, combined with the related porosity evolution processes, nicely revealed the Ordovician carbonate reservoir development. This study provides insights and guidance for further oil and gas exploration in the Southern North China Basin, and also advances our understanding of the genesis of carbonate paleokarst around the world.


2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


1975 ◽  
Vol 65 (4) ◽  
pp. 927-935
Author(s):  
I. M. Longman ◽  
T. Beer

Abstract In a recent paper, the first author has developed a method of computation of “best” rational function approximations ḡn(p) to a given function f̄(p) of the Laplace transform operator p. These approximations are best in the sense that analytic inversion of ḡn(p) gives a function gn(t) of the time variable t, which approximates the (generally unknown) inverse f(t) of f̄(p in a minimum least-squares manner. Only f̄(p) but not f(t) is required to be known in order to carry out this process. n is the “order” of the approximation, and it can be shown that as n tends to infinity gn(t) tends to f(t) in the mean. Under suitable conditions on f(t) the convergence is extremely rapid, and quite low values of n (four or five, say) are sufficient to give high accuracy for all t ≧ 0. For seismological applications, we use geometrical optics to subtract out of f(t) its discontinuities, and bring it to a form in which the above inversion method is very rapidly convergent. This modification is of course carried out (suitably transformed) on f̄(p), and the discontinuities are restored to f(t) after the inversion. An application is given to an example previously treated by the first author by a different method, and it is a certain vindication of the present method that an error in the previously given solution is brought to light. The paper also presents a new analytical method for handling the Bessel function integrals that occur in theoretical seismic problems related to layered media.


2021 ◽  
Author(s):  
Mojtaba Moradi ◽  
Michael R Konopczynski

Abstract Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.


Sign in / Sign up

Export Citation Format

Share Document