The New Flow Control Devices Autonomously Controlling the Performance of Matrix Acid Stimulation Operations in Carbonate Reservoirs

2021 ◽  
Author(s):  
Mojtaba Moradi ◽  
Michael R Konopczynski

Abstract Matrix acidizing is a common but complex stimulation treatment that could significantly improve production/injection rate, particularly in carbonate reservoirs. However, the desired improvement in all zones of the well by such operation may not be achieved due to existing and/or developing reservoir heterogeneity. This paper describes how a new flow control device (FCD) previously used to control water injection in long horizontal wells can also be used to improve the conformance of acid stimulation in carbonate reservoirs. Acid stimulation of a carbonate reservoir is a positive feedback process. Acid preferentially takes the least resistant path, an area with higher permeability or low skin. Once acid reacts with the formation, the injectivity in that zone increases, resulting in further preferential injection in the stimulated zone. Over-treating a high permeability zone results in poor distribution of acid to low permeability zones. Mechanical, chemical or foam diversions have been used to improve stimulation conformance along the wellbore, however, they may fail in carbonate reservoirs with natural fractures where fracture injectivity dominates the stimulation process. A new FCD has been developed to autonomously control flow and provide mechanical diversion during matrix stimulation. Once a predefined upper limit flowrate is reached at a zone, the valve autonomously closes. This eliminates the impact of thief zone on acid injection conformance and maintains a prescribed acid distribution. Like other FCDs, this device is installed in several compartments in the wells. The device has two operating conditions, one, as a passive outflow control valve, and two, as a barrier when the flow rate through the valve exceeds a designed limit, analogous to an electrical circuit breaker. Once a zone has been sufficiently stimulated by the acid and the injection rate in that zone exceeds the device trip point, the device in that zone closes and restricts further stimulation. Acid can then flow to and stimulate other zones This process can be repeated later in well life to re-stimulate zones. This performance enables the operators to minimise the impacts of high permeability zones on the acid conformance and to autonomously react to a dynamic change in reservoirs properties, specifically the growth of wormholes. The device can be installed as part of lower completions in both injection and production wells. It can be retrofitted in existing completions or be used in a retrievable completion. This technology allows repeat stimulation of carbonate reservoirs, providing mechanical diversion without the need for coiled tubing or other complex intervention. This paper will briefly present an overview of the device performance, flow loop testing and some results from numerical modelling. The paper also discusses the completion design workflow in carbonates reservoirs.

2021 ◽  
Author(s):  
Clement Fabbri ◽  
Haitham Ali Al Saadi ◽  
Ke Wang ◽  
Flavien Maire ◽  
Carolina Romero ◽  
...  

Abstract Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir. This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results. A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints. The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daigang Wang ◽  
Jingjing Sun

Abstract Cyclic water huff and puff (CWHP) has proven to be an attractive alternative to improve oil production performance after depletion-drive recovery in fractured-vuggy carbonate reservoirs. However, due to the impact of strong heterogeneity, multiple types of fractured-vuggy medium, poor connectivity, complex flow behaviors and oil-water relationship, CWHP is merely suitable for specific types of natural fractured-vuggy medium, usually causing a great difference in actual oil-yielding effect. It remains a great challenge for accurate evaluation of CWHP adaptability and quantitative prediction of production performance in fractured-vuggy carbonate reservoir, which severely restricts the application of CWHP. For this study, we firstly enable the newly developed fuzzy grey relational analysis to quantify the adaptability of CWHP. With production history of several targeted producers, the accuracy of the proposed method is validated. Based on the traditional percolation theory and waterflood mechanisms in various types of fractured-vuggy medium, a quantitative prediction model for cyclic water cut fwp and increased recovery factor ΔR is presented. The CWHP production performance is discussed by using the Levenberg-Marquardt algorithm for history matching. With a better understanding of the fwp ~ ΔR curve characteristics in different types of fractured-vuggy medium, proper strategies or measures for potential-tapping remaining oil are provided. This methodology can also offer a good basis for engineers and geologists to develop other similar reservoirs with high efficiency.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Tobias Werder ◽  
Robert Liebich ◽  
Karl Neuhäuser ◽  
Clara Behnsen ◽  
Rudibert King

Abstract As a consequence of constant volume combustion in gas turbines, pressure waves propagating upstream the main flow into the compressor system are generated leading to incidence variations. Numerical and experimental investigations of stator vanes have shown that active flow control (AFC) by means of adaptive blade geometries is beneficial when such periodic incidence variations occur. A significant risk reduction in a compressor facing disturbances can thereby be achieved concerning stall or choke. Experimental investigations on such an AFC method with simultaneous application of a closed-loop control are missing in order to demonstrate its potential. This work investigates a linear compressor cascade that is equipped with a 3D-manufactured piezo-adaptive blade structure. The utilized actuators are piezoelectric macro-fiber-composites. A throttling device is positioned downstream the trailing edge plane to emulate an unsteady combustion process. Periodic transient throttling events with a frequency of up to 20 Hz cause incidence changes to the blade’s leading edge. Consequently, pressure fluctuations on the blade’s surface occur, having a significant impact on the pressure recovery downstream of the stator cascade. Experimental results of harmonically actuating the piezo-adaptive blade with the corresponding disturbance frequency show that the impact of disturbances can be reduced to approximately 50%. However, this is only effective if the phase shift of the harmonic actuation is adjusted correctly. Using an inadequate phase shift reverses the positive effects, causing the aforementioned stall, choke, or significant losses. In order to find the optimum phase shift, even under varying, possibly unpredictable operating conditions, an extremum seeking controller is presented. This gradient-based approach is minimizing the pressure variance over time by carefully adjusting the phase shift of the harmonic actuation of the AFC system.


2014 ◽  
Vol 644-650 ◽  
pp. 5065-5070
Author(s):  
Shuai Jiang ◽  
Zheng Ming Yang ◽  
Xue Wei Liu ◽  
Meng Ting Wang ◽  
Qian Zhang

With the development of the global oil industry,the production of the normal or high permeability reservoirs decline rapidly. Therefore, more and more low permeability reservoirs are used to the production stimulation. The oilfields overseas make great contribution to CNPC. The HF oilfield is one oilfield that the CNPC have in overseas. The HF oilfield is mainly the low permeability carbonate reservoirs which make it not easy to economically exploit. Due to the reason that the low permeability carbonate reservoirs present small porosity and the fluid’s flow situation in the low permeability carbonate reservoirs, the flow doesn't obey the Darcy's law. Thus it is greatly necessary to study the non-Darcy percolation characteristics. In this paper, the HF ‘s low permeability is tested and the threshold pressure gradient test is finished ,according to the experiment results, the nonlinear percolation ‘s law ,which is suited to HF-oil field , is illustrated and the reservoir classification is achieved.


2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1425-1434 ◽  
Author(s):  
Mikhail Shatrov ◽  
Valery Malchuk ◽  
Andrey Dunin ◽  
Ivan Shishlov ◽  
Vladimir Sinyavski

A method of fuel injection rate shaping of the Diesel engine common rail fuel system with common rail injectors and solenoid control is proposed. The method envisages the impact on control current of impulses applied to the control solenoid valve of the common rail injectors for variation of the injection rate shape. At that, the fuel is supplied via two groups of injection holes. The entering edges of the first group with the coefficient of flow, ??B, were located in the sack volume and the entering edges of the second group (coefficient of flow, ??H) - on the locking taper surface of the nozzle body. The coefficients of flow, ??B, and ??H differ considerably and depend on the valve needle position. This enables to adjust the injection quantity by injection holes taking into account operating conditions of the Diesel engine and hence - by the combustion chamber zones. Using the constant fuel flow set-up, characteristic of the effective cross-section of the common rail fuel system injector holes was investigated. The diameter of injector holes was 0.12 ? 0.135 mm. The excessive pressure at the entering edges varied from 30 to 150 MPa and more and the excessive pressure in the volume behind the output edge - from 0 to 16 MPa.


Author(s):  
Mohammad Yunus Khan ◽  
Ajay Mandal

AbstractAvailability of gases at the field level makes attractive to water-alternating-gas (WAG) process for low viscosity and light oils carbonate reservoir. However, impact of reservoir heterogeneity on WAG performance is crucial before field application. In general, ramp carbonates have heterogeneity due to variation of permeability and porosity. However, WAG performance significantly affected by permeability variations. This article investigates merits and demerits of WAG displacement due to permeability heterogeneities such as permeability anisotropy, high permeability streaks (HKS), matrix permeability, dolomite and thin dense stylolite layers. High-resolution compositional simulations with tuned equation of state (EoS) were carried out using 2D and 3D sector models. The study focuses on WAG performance in terms of oil recovery, vertical sweep, solvent utilization, gas oil ratio (GOR), water cut (WCT), WAG response time, gravity override, hysteresis, un-contacted oil saturation and economics. The results of simulation show that the heterogeneous reservoir provides initially faster WAG response, lower expected ultimate recovery (EUR), faster gas breakthrough, higher GOR and WCT production compared to homogeneous reservoir. The gas gravity override at smaller wells spacing is less in homogeneous reservoir as compared to heterogeneous reservoir, but it is reverse in case of larger well spacing. In heterogeneous reservoir, the HKS shows significant gas override resulting in poor vertical sweep due to capillary holding, and the high permeability dolomite layer shows early water breakthrough. This reservoir has higher solvent utilization in initial stage, and then, it becomes nearly equal to homogeneous reservoir. Simulation in both reservoirs overestimates incremental recovery of 2–3% OOIP at one pore volume injection because of not involving un-contacted oil saturation as predicted in core flood. The findings of this study will help to understand WAG performance and design in highly heterogeneous reservoirs for field applications. Graphical abstract


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Wenting Yue ◽  
John Yilin Wang

The carbonate oil field studied is a currently producing field in U.S., which is named “PSU” field to remain anonymity. Discovered in 1994 with wells on natural flow or through artificial lift, this field had produced 17.8 × 106 bbl of oil to date. It was noticed that gas oil ratio had increased in certain parts and oil production declined with time. This study was undertaken to better understand and optimize management and operation of this field. In this brief, we first reviewed the geology, petrophysical properties, and field production history of PSU field. We then evaluated current production histories with decline curve analysis, developed a numerical reservoir model through matching production and pressure data, then carried out parametric studies to investigate the impact of injection rate, injection locations, and timing of injection, and finally developed optimized improved oil recovery (OIR) methods based on ultimate oil recovery and economics. This brief provides an addition to the list of carbonate fields available in the petroleum literature and also improved understandings of Smackover formation and similar analogous fields. By documenting key features of carbonated oil field performances, we help petroleum engineers, researchers, and students understand carbonate reservoir performances.


2021 ◽  
Author(s):  
Rasoul Nazari ◽  
Nurlan Zhulomanov ◽  
Marcellinus van Doorn ◽  
Auribel Dos Santos ◽  
Nurbek Medeuov

Abstract Stimulation systems have improved over past decades, yet challenges prevail in corrosion, unwanted precipitation and handling hazardous chemicals. The role of chelating agents in coping with such concerns, is undeniably positive: their limited corrosivity, effective metal control and outstanding HSE profile, make them effective acidizing alternatives. Particularly when seeking delayed reaction at high temperature or removing insoluble material like Barite, chelating agents like GLDA and DTPA respectively have been reported effective both at laboratory and field scale. Formulations based on abovementioned chelating agents were evaluated experimentally to assess potential stimulation of Kazakhstan formations. Core-plug samples used in this evaluation are predominantly carbonate rock originating from different wells. The coreflooding experiments were performed at HPHT conditions to assess performance of treatment fluids to a) create new flow-channels (wormholes) thus improving rock permeability, and b) remove BaSO4-based solids suspected to be affecting productivity in the field. In this work, five reservoir core plugs were stimulated by GLDA based formulation to assess wormholing mechanism, while two core-plugs were treated by DTPA based fluid to study the impact of matrix cleaning. The matrix cleaning properties of DTPA based fluid were investigated on the damaged core plugs which were artificially damaged by in-situ precipitation of BaSO4 scale. The coreflood study included injection of the preflush, the treatment fluid and the post-flush system at reservoir temperature of 270 °F and low injection rates to accommodate the low permeability of the formation. It was shown that GLDA based fluid can effectively stimulate the reservoir core samples. The effective mechanism was observed to be wormholing thus increasing rock permeability by over a thousand times. No signs of face dissolution were observed despite slow injection rate at such high temperature; something that was not possible when a fast reacting acid (i.e. HCl) was used under the same conditions. In addition, it was shown that the DTPA based fluid can efficiently improve the rock permeability through matrix cleaning by both Barium and Calcium chelation. In the first treatment test by this fluid system, around 45% of the damaged permeability was recovered. While in the second test, not only BaSO4 scale was dissolved but also the CaCO3 minerals were partly dissolved and the core permeability was significantly increased (Kf/Ki >200). Experimental results bring promising prognosis for field implementation despite expected low injectivity at high downhole temperature. GLDA treatments avoid premature acid spending and face dissolution - common outcomes of HCl- which translate into deeper extent of stimulation. Additionally, in barite damaged wells, DTPA treatment represents an attractive solution for damage reduction and by-passing. Finally, intrinsic properties of chelating agents reduce asset integrity risks, improve operation HSE and simplify flow-back handling.


2021 ◽  
Author(s):  
Salem Al-Sabea ◽  
Milan Patra ◽  
Abdullah Abu-Eida ◽  
Nasser Al-Azmi ◽  
Mohammad AlEidi ◽  
...  

Abstract The Mishrif formation in west Kuwait is a tight carbonate reservoir having low oil mobility. It is fractured and heterogeneous with wide variation in porosity ranging from 10 to 25%, matrix permeability of about 0.1 to 10 md, and 20°API oil. Production tests and geomechanical study results have revealed that productivity is mostly from the high-permeability matrix and critically stressed fracture networks. Recently, the Mishrif development has been dominated by horizontal wells to maximize reservoir contact and enhance productivity. However, a challenge in such openhole completion is the stimulation strategy requiring effective diversion technology due to the uneven acid distribution along the lateral section. To address those challenges, a novel engineered workflow has been implemented relying on distributed temperature sensing (DTS) to assess the fluid coverage across the openhole section. Results enable identifying high- and low-intake zones, segmenting the uncased section into intervals requiring different levels of stimulation, and making informed decisions regarding diversion requirements. The intervention was conducted in two stages. Coiled tubing (CT) was the selected fluid conveyance method on the first stage given its capacity for more controlled fluid placement, and high-rate bullheading stimulation was selected for the second stage. During the treatment, multiple challenges were faced, mainly driven by a high-permeability streak identified by the DTS near the heel of the lateral. The CT stimulation procedures were modified on the spot, and measures were taken to minimize the impact on the thief zone, which included a combination of diversion techniques, such as high-pressure jetting, dual injection, and pumping of a near-wellbore nonreactive diverter, which is composed of a customized blend of multimodal particles and degradable fibers to minimize fluid leakoff into the high-intake zone. Likewise, real-time downhole telemetry was crucial throughout the CT stimulation because it allowed the highest injection rate possible below the preset pressure limits, continuous monitoring of downhole dynamics along the intervention, and optimal actuation of the high-pressure jetting tool. Upon completion of the CT stimulation, a second DTS log was carried out to evaluate the fluid coverage and effectiveness of the diversion strategy, enabling further adjustment of the bullhead stimulation program. This stimulation workflow implemented in west Kuwait represents a cost-effective alternative to stimulate openhole tight carbonates. This study brings new perspectives for treating complex reservoirs in the region, and shares lessons learned for future interventions.


Author(s):  
Tobias Werder ◽  
Robert Liebich ◽  
Karl Neuhäuser ◽  
Clara Behnsen ◽  
Rudibert King

Abstract As a consequence of constant volume combustion in gas turbines pressure waves propagating upstream the main flow into the compressor system are generated leading to incidence variations. Numerical and experimental investigations of stator vanes have shown that Active Flow Control (AFC) by means of adaptive blade geometries is beneficial when such periodic incidence variations occur. A significant risk reduction in a compressor facing disturbances can thereby be achieved concerning stall or choke. Experimental investigations on such an AFC method with simultaneous application of a closed-loop control are missing in order to demonstrate its potential. This work investigates a linear compressor cascade that is equipped with a 3D-manufactured piezo adaptive blade structure. The utilized actuators are piezoelectric Macro-Fiber-Composites. A throttling device is positioned downstream the trailing edge plane to emulate an unsteady combustion process. Periodic transient throttling events with a frequency of up to 20 Hz cause incidence changes to the blade’s leading edge. Consequently, pressure fluctuations on the blade’s surface occur, having a significant impact on the pressure recovery downstream of the stator cascade. Experimental results of harmonically actuating the piezo adaptive blade with the corresponding disturbance frequency show that the impact of disturbances can be reduced to approx. 50 %. However, this is only effective if the phase shift of the harmonic actuation is adjusted correctly. Using an inadequate phase shift reverses the positive effects, causing the aforementioned stall, choke, or significant losses. In order to find the optimum phase shift, even under varying, possibly unpredictable operating conditions, an Extremum Seeking Controller is presented. This gradient-based approach is minimizing the pressure variance over time by carefully adjusting the phase shift of the harmonic actuation of the AFC system.


Sign in / Sign up

Export Citation Format

Share Document