Recent Case Histories of Multilateral Systems Enabling Thru Tubing Intervention in the Middle East

2021 ◽  
Author(s):  
Benjamin Butler ◽  
Matthew Kelsey ◽  
Baidy Racine

Abstract Historically, the ability to perform intervention on multilateral wells has been limited. While multilateral (ML) well construction technologies have progressed to a high level of reliability, multilateral systems that enabled intervention during the life of well had a more limited track record. Intervention outcomes after prolonged periods of production were less consistent. This lack of technologies with sufficient intervention case histories meant that generally multilateral well architecture was not selected in applications where thru tubing intervention was a requirement. In recent years, multilateral well architecture has continued to increase in demand, with more ML wells drilled and completed in the last five years than any other five-year period in the technology's history. With this increased demand has come industry enthusiasm to further mature its intervention capabilities. This paper will review two recent case histories of separate multilateral well completion systems that enable intervention. This opens up new potential for the industry to take advantage of the cost reductions achieved with multilaterals in a much larger scope of well applications. Two separate completion systems will be covered in this paper, System A installed in a cemented multilateral junction and system B, a completion that creates a hydraulically isolated junction via either a dual string completion or a single string completion that splits into two strings. These case histories were exectuted in 2017 to 2019, and interventions were performed after one to two years of production. Detailed in each case study will be an overview of the equipment, the operational sequence, intervention outcome, and any lessons learned or improvements. The systems have demonstrated themselves as a reliable method to access laterals in non-ideal downhole environments where debris is present after the well has been on production. The tubing sizes for the case studies are 3-1/2" and 4-1/2". In each of these wells, the following operations have been successfully performed: drift testing, acid stimulation through coil tubing and breaking of a ceramic disc. Both slickline and coil tubing have been used for the interventions and in some cases with tractors. Junction inclinations range from 1 to 43 degrees. Plans for ongoing installations for the systems are being executed in the Middle East Region. Further, expansion of the system A capabilities by integrating it with other existing technologies is also planned. This will enable projects such as the installation of a trilateral well with flow control and intervention for each individual leg, and also the conversion of existing single bore wells to multilateral with intervention capability.

2021 ◽  
Author(s):  
Marco A Aburto Perez ◽  
Anurag S Yadav ◽  
Steven R Farley

Abstract Based on input from key operators in the Middle East region, a new rotary steerable system (RSS) was launched after a compressed development schedule. This paper describes the development and introduction of the larger tool sizes needed for both onshore and offshore hole sections, including hole sizes from 12 in. and up, in the Middle East. It also outlines the deliberate design of the tool for local assembly and repair. Large diameter (9-1/2 and 11 in.) RSS designs used an existing, smaller design for Middle East applications in both offshore and onshore wells as a basis. When designing these new sizes, engineers took note of lessons learned with smaller sizes of the tool and incorporated design elements for local manufacturing, assembly, and repair. The resulting simple, modular construction enables increased levels of local content and provides for significant reductions in transportation, and therefore associated emissions. Of course, although local content and sustainability are highly desirable, performance is essential, and this paper describes case histories demonstrating how well the new tool worked in real-world Middle East applications. In one notable example, the newly introduced 9 1/2-in. diameter RSS was used to drill an offshore section in the Gulf of Arabia. The tool was mobilized after two older generation RSS had become stuck for days. Consisting primarily of argillaceous limestone, the formation had a history of stuck-pipe events. The new RSS was recommended for this application because of a slicker construction, with a fully rotational bias unit, minimal bottom hole assembly (BHA) stabilization, and an optimized junk slot area, which together help to reduce stuck-pipe risks. The tool drilled to the target depth in a single run, thereby achieving all directional requirements. Notably, after reaching the target depth, the assembly was tripped out of the hole without any requirement for backreaming. This seamless exit, in turn, indicated achieving a smooth wellbore. Other case histories demonstrate results with both new sizes of this tool. The paper also discusses in detail the ability to repair locally and engage the local supply chain. Specifically with Middle East applications in mind, a new, simple RSS design in large diameter versions has demonstrated success in offshore and onshore applications across the region. The design has also proven capabilities for manufacturing and repair local to operations, which enables maximizing in-country value, optimizing use of the tools, and energizing local supply chains.


2018 ◽  
Vol 45 (1) ◽  
pp. 65-81 ◽  
Author(s):  
Radosław Milewski ◽  
Tomasz Smal

The dynamics of change in the contemporary world affect all areas including cross-border material flows. On the one hand, globalization has disseminated thought models and patterns of behavior based on decision patterns, thus bringing logistics to the "templates" of efficient logistics. On the other hand, has imposed and forced the need for continuous changes in the optimization of decision-making processes that are adequate to increasingly complex challenges. The main purpose of this article is to introduce the reader to decision making scenarios taken in military transport processes with particular emphasis to logistics and transport costs. This article is an attempt as well at evaluating decision scenarios in transport processes, determined mainly by the cost criterion. The whole of the considerations relates to the security of transports carried out for the purpose of military operations, that is to say, military security, understood as a safe and reliable implementation of a military operation, which must be preceded by the movement of troops into theater operations. The publication uses the experience of "lessons learned", resulting from the actions of Polish military contingents abroad. The conducted studies and analyzes show that it is possible to model transport taking into consideration the cost of specific cargo mass to areas of peacekeeping operations using services provided by carriers operating on the transport market. This kind of approach will lead in the future to changes in the logistics system without the need to spend a great deal on the purchase or hire of transport resources needed to carry out the transport function at the strategic level. As it was proved, logistics processes that take place in an international system require interpersonal cooperation and consequently appropriate relations and a high level of coordination, which change should be determined by the extent of responsibility.


The productivity of land has been often discussed and deliberated by the academia and policymakers to understand agriculture, however, very few studies have focused on the agriculture worker productivity to analyze this sector. This study concentrates on the productivity of agricultural workers from across the states taking two-time points into consideration. The agriculture worker productivity needs to be dealt with seriously and on a time series basis so that the marginal productivity of worker can be ascertained but also the dependency of worker on agriculture gets revealed. There is still disguised unemployment in all the states and high level of labour migration, yet most of the states showed the dependency has gone down. Although a state like Madhya Pradesh is doing very well in terms of income earned but that is at the cost of increased worker power in agriculture as a result of which, the productivity of worker has gone down. States like Mizoram, Meghalaya, Nagaland and Tripura, though small in size showed remarkable growth in productivity and all these states showed a positive trend in terms of worker shifting away from agriculture. The traditional states which gained the most from Green Revolution of the sixties are performing decently well, but they need to have the next major policy push so that they move to the next orbit of growth.


Based on personal accounts of their experiences conducting qualitative and quantitative research in the countries of the Middle East and North Africa, the contributors to this volume share the real-life obstacles they have encountered in applying research methods in practice and the possible solutions to overcome them. The volume is an important companion book to more standard methods books, which focus on the “how to” of methods but are often devoid of any real discussion of the practicalities, challenges, and common mistakes of fieldwork. The volume is divided into three parts, highlighting the challenges of (1) specific contexts, including conducting research in areas of violence; (2) a range of research methods, including interviewing, process-tracing, ethnography, experimental research, and the use of online media; and (3) the ethics of field research. In sharing their lessons learned, the contributors raise issues of concern to both junior and experienced researchers, particularly those of the Global South but also to those researching the Global North.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1447
Author(s):  
Jose P. Suárez ◽  
Agustín Trujillo ◽  
Tania Moreno

Showing whether the longest-edge (LE) bisection of tetrahedra meshes degenerates the stability condition or not is still an open problem. Some reasons, in part, are due to the cost for achieving the computation of similarity classes of millions of tetrahedra. We prove the existence of tetrahedra where the LE bisection introduces, at most, 37 similarity classes. This family of new tetrahedra was roughly pointed out by Adler in 1983. However, as far as we know, there has been no evidence confirming its existence. We also introduce a new data structure and algorithm for computing the number of similarity tetrahedral classes based on integer arithmetic, storing only the square of edges. The algorithm lets us perform compact and efficient high-level similarity class computations with a cost that is only dependent on the number of similarity classes.


Author(s):  
Irfan Uddin

The microthreaded many-core architecture is comprised of multiple clusters of fine-grained multi-threaded cores. The management of concurrency is supported in the instruction set architecture of the cores and the computational work in application is asynchronously delegated to different clusters of cores, where the cluster is allocated dynamically. Computer architects are always interested in analyzing the complex interaction amongst the dynamically allocated resources. Generally a detailed simulation with a cycle-accurate simulation of the execution time is used. However, the cycle-accurate simulator for the microthreaded architecture executes at the rate of 100,000 instructions per second, divided over the number of simulated cores. This means that the evaluation of a complex application executing on a contemporary multi-core machine can be very slow. To perform efficient design space exploration we present a co-simulation environment, where the detailed execution of instructions in the pipeline of microthreaded cores and the interactions amongst the hardware components are abstracted. We present the evaluation of the high-level simulation framework against the cycle-accurate simulation framework. The results show that the high-level simulator is faster and less complicated than the cycle-accurate simulator but with the cost of losing accuracy.


2014 ◽  
Author(s):  
Jeff Cowan

California experienced a 300% increase in loss of propulsion (LOP) incidents since its distillate fuel regulation came into effect in 2009. The compression ignition (Diesel) engines aboard modern cargo ships over 10,000 gross tons use 3.0% sulfur Heavy Fuel Oil (HFO). This fuel must be heated to flow through the fuel lines because at normal ambient temperature HFO has the consistency of tar. Distillate fuel in contrast does not require the high temperatures, and the thermodynamics of cooling metal, gaskets and seals resulted in leaks, along with filter clogging from engine buildup scrubbing. In addition, the cost savings of using HFO are significant over the use of distillate fuel which is typically around US$300 more per ton.


Sign in / Sign up

Export Citation Format

Share Document