Optimization of Heavy Oil and Gas Pumping in Horizontal Wells

Author(s):  
Philippe Rondy ◽  
H.J. Cholet ◽  
Imre Federer
2018 ◽  
Vol 931 (1) ◽  
pp. 2-7
Author(s):  
V.D. Jushkin ◽  
L.V. Zotov ◽  
O.A. Khrapenko

The results of repeated measurements of the acceleration of gravity by the Russian absolute ballistic field gravimeter GABL-M on points of oil and gas deposits in the permafrost over a five year period are presented. The changes of gravity acceleration by the absolute gravimeter and GRACE satellite were compared. The results of comparisons of differences gravity acceleration by ballistic gravimeter GABL-M and relative Canadian gravimeters CG5 were [i]shown. The errors in determination of parameters of the gravitational field ballistic gravimeter GABL-M and CG5 gravimeters group were presented. The method of measurement with the gravimeter GABL-M and the method of determining the vertical gradients relative CG5 gravity meters was described. The necessity of introducing corrections of hydrogeology is caused by influence of hydro geological factors on the gravitational field in the permafrost. They are comparable with the values of the field change in the result of gas pumping.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2021 ◽  
pp. 1-13
Author(s):  
K. Zobeidi ◽  
M. Ganjeh-Ghazvini ◽  
V. Hematfar

Summary During the years 2017–2020, when Iran faced restrictions on the sale of oil and gas condensate and due to the need for domestic consumption and gas sales commitments, it was inevitable to produce gas at full capacity. This coercion has led to significant production of gas condensates. Some of these condensates were sold, some were converted into products such as gasoline in domestic refineries, and some of these condensates needed to be stored, but the storage capacity was limited. For the purpose of underground condensate storage, a heavy oil reservoir was selected based on some technical and operational criteria. A feasibility study was conducted to evaluate the potential risks of condensate injection into the reservoir. The results of tests on asphaltene precipitation, as the most important risk, indicated no severe precipitation would occur even if high concentration of condensate mixed with the reservoir heavy oil. The recovery of condensate and the production performance of the reservoir were simulated in three different injection-production scenarios. The results showed a positive effect of condensate injection on production rate of the reservoir. Moreover, satisfactory volume of condensate could be recovered in a reasonable period of time.


2015 ◽  
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Abstract Since the late 1980's when Maersk published their work on multiple fracturing of horizontal wells in the Dan Field, the use of transverse multiple fractured horizontal wells has become the completion of choice and become the “industry standard” for unconventional and tight oil and tight gas reservoirs. Today approximately sixty percent of all wells drilled in the United States are drilled horizontally and nearly all of them are multiple fractured. Because a horizontal well adds additional cost and complexity to the drilling, completion, and stimulation of the well we need to fully understand anything that affects the cost and complexity. In other words, we need to understand the affects of the principal stresses, both direction and magnitude, on the drilling completion, and stimulation of these wells. However, little work has been done to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the question, in what direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal) or do I drill it in the direction of the minimum horizontal stress (transverse)? The answer to this question relates directly back to the title of this paper and please "Don't let your land man drive that decision." This paper focuses on the horizontal well's lateral direction (longitudinal or transverse fracture orientation) and how that direction influences productivity, reserves, and economics of horizontal wells. Optimization studies using a single phase fully three dimensional numeric simulator including convergent non-Darcy flow were used to highlight the importance of lateral direction as a function of reservoir permeability. These studies, conducted for both oil and gas, are used to identify the point on the permeability continuum where longitudinal wells outperform transverse wells. The simulations compare and contrast the transverse multiple fractured horizontal well to longitudinal wells based on the number of fractures and stages. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affected the decision over lateral direction in both oil and gas reservoirs. Additionally, how does completion style affect the lateral direction? That is, how does an open hole completion compare to a cased hole completion and should the type of completion affect the decision on in what direction the lateral should be drilled? These simulation results will be used to discuss the various horizontal well completion and stimulation metrics (rate, recovery, and economics) and how the choice of metrics affects the choice of lateral direction. This paper will also show a series of field case studies to illustrate actual field comparisons in both oil and gas reservoirs of longitudinal versus transverse horizontal wells and tie these field examples and results to the numeric simulation study. This work benefits the petroleum industry by: Establishing well performance and economic based criteria as a function of permeability for drilling longitudinal or transverse horizontal wells,Integrating the reservoir objectives and geomechanic limitations into a horizontal well completion and stimulation strategy,Developing well performance and economic objectives for horizontal well direction (transverse versus longitudinal) and highlighting the incremental benefits of various completion and stimulation strategies.


2021 ◽  
Author(s):  
David Russell ◽  
Price Stark ◽  
Sean Owens ◽  
Awais Navaiz ◽  
Russell Lockman

Abstract Reducing well costs in unconventional development while maintaining or improving production continues to be important to the success of operators. Generally, the primary drivers for oil and gas production are treatment fluid volume, proppant mass, and the number of stages or intervals along the well. Increasing these variables typically results in increased costs, causing additional time and complexity to complete these larger designs. Simultaneously completing two wells using the same volumes, rates, and number of stages as for any previous single well, allows for more lateral length or volume completed per day. This paper presents the necessary developments and outcomes of a completion technique utilizing a single hydraulic fracturing spread to simultaneously stimulate two or more horizontal wells. The goal of this technique is to increase operational efficiency, lower completion cost, and reduce the time from permitting a well to production of that well—without negatively impacting the primary drivers of well performance. To date this technique has been successfully performed in both the Bakken and Permian basins in more than 200 wells, proving its success can translate to other unconventional fields and operations. Ultimately, over 200 wells were successfully completed simultaneously, resulting in a 45% increase in completion speed and significant decrease in completion costs, while still maintaining equivalent well performance. This type of simultaneous completion scenario continues to be implemented and improved upon to improve asset returns.


2021 ◽  
Author(s):  
Celal Hakan Canbaz ◽  
Cenk Temizel ◽  
Yildiray Palabiyik ◽  
Korhan Kor ◽  
Luky Hendrandingrat ◽  
...  

Abstract Oil Industry is going green and there is no solid and comprehensive publication that outlines the use of green energies and methods in oil recovery. Thus, this paper is going to close that gap. As there are more environmental restrictions especially in developed countries, inclusion of green energy methods in petroleum recovery processes is very important for the future of these reserves. We will focus on extra/heavy oil as conventional oil is simpler to produce and doesn't need EOR processes that may come with environmental footprints. The objective of this study is to investigate and outline the ‘green’ production and recovery processes of heavy oil recovery in environmentally-sensitive locations where greenhouse gas emissions, type of energy used to extract oil and gas (e.g., generation of steam using natural gas vs solar), environmental impact of surface facilities, transportation of produced oil and gas and other associated materials/chemica ls required for recovery (e.g. solvents for steam injection process) are critical for the operations as well as economics.


2021 ◽  
pp. 1-16
Author(s):  
Sulaiman A. Alarifi ◽  
Jennifer Miskimins

Summary Reserves estimation is an essential part of developing any reservoir. Predicting the long-term production performance and estimated ultimate recovery (EUR) in unconventional wells has always been a challenge. Developing a reliable and accurate production forecast in the oil and gas industry is mandatory because it plays a crucial part in decision-making. Several methods are used to estimate EUR in the oil and gas industry, and each has its advantages and limitations. Decline curve analysis (DCA) is a traditional reserves estimation technique that is widely used to estimate EUR in conventional reservoirs. However, when it comes to unconventional reservoirs, traditional methods are frequently unreliable for predicting production trends for low-permeability plays. In recent years, many approaches have been developed to accommodate the high complexity of unconventional plays and establish reliable estimates of reserves. This paper provides a methodology to predict EUR for multistage hydraulically fractured horizontal wells that outperforms many current methods, incorporates completion data, and overcomes some of the limitations of using DCA or other traditional methods to forecast production. This new approach is introduced to predict EUR for multistage hydraulically fractured horizontal wells and is presented as a workflow consisting of production history matching and forecasting using DCA combined with artificial neural network (ANN) predictive models. The developed workflow combines production history data, forecasting using DCA models and completion data to enhance EUR predictions. The predictive models use ANN techniques to predict EUR given short early production history data (3 months to 2 years). The new approach was developed and tested using actual production and completion data from 989 multistage hydraulically fractured horizontal wells from four different formations. Sixteen models were developed (four models for each formation) varying in terms of input parameters, structure, and the production history data period it requires. The developed models showed high accuracy (correlation coefficients of 0.85 to 0.99) in predicting EUR given only 3 months to 2 years of production data. The developed models use production forecasts from different DCA models along with well completion data to improve EUR predictions. Using completion parameters in predicting EUR along with the typical DCA is a major addition provided by this study. The end product of this work is a comprehensive workflow to predict EUR that can be implemented in different formations by using well completion data along with early production history data.


2021 ◽  
Author(s):  
Alexander Katashov ◽  
Igor Novikov ◽  
Evgeny Malyavko ◽  
Nadir Husein

Abstract Over the past few years, the oil and gas industry has faced a situation of high fluctuations in hydrocarbon prices on the world market. In addition, the trend for the depletion of traditional hydrocarbon reservoirs and the search for new effective solutions for the management and control of field development using horizontal and multilateral wells is still relevant. The most common method for horizontal wells testing is production logging tools (PLT) on coiled tubing (CT) or downhole tractor, which is associated with HSE risks and high cost, especially on offshore platforms, which limits the widespread use of this technology. The solution without such risks is the method of marker well monitoring, which allows obtaining information about the profile and composition of the inflow in a dynamic mode in horizontal wells without well intervention. There are several types of tracer (marker) carriers and today we will consider an approach to placing marker monitoring systems as part of a completion for three-phase oil, water and gas monitoring.


Sign in / Sign up

Export Citation Format

Share Document