Targeting Horizontal Wells—Efficient Oil Capture and Fracture Insights

1999 ◽  
Vol 2 (02) ◽  
pp. 180-185
Author(s):  
W.J. Tank ◽  
B.C. Curran ◽  
E.E. Wadleigh

Summary Horizontal well targeting is often a greater challenge in massive, fractured carbonates than in low-productivity, poorly connected, and relatively thin reservoirs. This paper discusses methods to target horizontal wellbores in three-dimensional space to both confirm the fracture interpretation and establish high-efficiency oil capture. Several well examples are presented to illustrate the targeting objectives and the resulting well performance. Early in the program, the horizontal drilling objectives sought to maximize the lateral length in a direction determined by offset well productivity; the sample philosophy as is used in matrix-dominated reservoirs. Analysis of these results and employment of methods presented in this paper indicate profit can be maximized by drilling to a specific target to intersect a fracture trend at an optimum elevation instead of concentrating on maximizing length of lateral. Intervals of rapid penetration, lost circulation, and/or bit slides, along with cutting sample compositions, provided insight for confirmation and extension of the fracture network interpretation. The width of disturbance and degree of fracturing observed along interpreted fracture trends are valuable data for improved fracture network interpretation and computer simulation. Both the elevation and number of fracture branches encountered are significant strategic planning issues for oil recovery from unconfined oil columns in a massive carbonate system. Results from a large number of horizontals indicate significant productivity increases are achieved by proper targeting of laterals into major fracture features. Introduction Horizontal wells provide a unique assessment tool for formations containing reservoirs dominated by discontinuous flow features such as fractures or interbedded sandstones. Massive carbonate formations are the most extreme setting for large-scale, high-contrast, discontinuous reservoir properties. In sandstones of moderate to low quality, horizontals are typically applied to improve rate by exposing additional formation for fluid entry at high drawdown. In carbonates, horizontals serve to intersect high-conductivity flow features. In sandstones, high flow quality often coincides with sand accumulation. In contrast, carbonate flow is often highly discontinuous while storage capacity remains a relatively continuous function (as limited by depositional and diagenetic porosity history). Since 1993, significant study has gone into identifying the extent and quality of fracture networks and the impact these systems have had on reservoir management, fluid reinjection, and completion efficiency.1,2 In west Texas alone, well over 100 short-radius horizontal wells have been drilled in one field since 1986. Horizontals drilled in this fractured carbonate reservoir were initially done to maximize oil production while limiting gas coning.3 With the recent fracture studies, emphasis has moved to using horizontal boreholes to connect with large flow features not penetrated in existing wellbores.4,5 These more recent wells have targeted fracture zones interpreted from flexure maps which are developed from a second derivative analysis of structural surface maps. This paper provides results of several horizontal wells drilled with the intent of cutting the interpreted fracture zones. Targeting horizontal wells requires an understanding of massive carbonate features as well as discontinuous flow features. This paper will discuss how mapping was used to determine flow-feature locations; how horizontal drilling techniques were used to intersect these targeted flow features; and a discussion of the refinement of the interpretation and the drilling operations. Massive Carbonate Flow Features What is a massive carbonate? Carbonates that have relatively thick (100 ft or greater) intervals of mixed porous and tight/brittle rock types, free of continuous soft shale or anhydrite layers, are considered massive for this discussion. Structural deformation is subtle in many massive carbonate reservoirs, but still highly significant in generating preferential flow within the reservoir body. Minor deformation, as resulting from differential compaction and formation dip growth is accommodated in a range of extensional fracturing of the relatively brittle carbonates. Potential solution enhancement of fracture and fault zones further enhances flow. The highly conductive flow features of these carbonates often are a mix of bedding parallel (matrix) and subvertical (fracture) features.2 Data gathered from vertical wells can bias the interpretation of flow-feature population due to sampling a greater population of bedding parallel features. Vertical wells statistically encounter numerous short, mostly random-oriented fractures, but very few of the largest subvertical fracture features. Horizontal wells, in contrast, encounter few bedding parallel flow features in exchange for a full range of subvertical fracture flow features. Horizontal wells can provide data for direct assessment of fracture frequency and matrix block size in contrast to the highly interpretive approach required for assessment from vertical well data. More importantly, horizontal well data provides insight into the lateral variance in subvertical fracture features. Significant variation is expected between low fracture intensity near the center of a large formation block relative to the high frequency expected near the edges of this block where strain is concentrated. Block edges for large-scale features may follow obvious faults, hingelines (linear trends of dip change), or structural noses. Fig. 1 conceptually illustrates a fractured rock mass with a horizontal well intersecting a strain zone of likely high-flow capacity. Often, the structural indications of block-edge strain zones are subtle and easily merged with interpreted depositional or erosional changes across the field. Here, horizontal well data are critical to generation of an adequate flow-feature model.

2021 ◽  
Author(s):  
Rida Mohamed Elgaddafi ◽  
Victor Soriano ◽  
Ramadan Ahmed ◽  
Samuel Osisanya

Abstract Horizontal well technology is one of the major improvements in reservoir stimulation. Planning and execution are the key elements to drill horizontal wells successfully, especially through depleted formations. As the reservoir has been producing for a long time, pore pressure declines, resulting in weakening hydrocarbon-bearing rocks. Drilling issues such as wellbore stability, loss circulation, differential sticking, formation damage remarkably influenced by the pore pressure decline, increasing the risk of losing part or even all the horizontal interval. This paper presents an extensive review of the potential issues and solutions associated with drilling horizontal wells in depleted reservoirs. After giving an overview of the depleted reservoir characteristics, the paper systematically addresses the major challenges that influence drilling operations in depleted reservoirs and suggests solutions to avoid uncontrolled risks. Then, the paper evaluates several real infill drilling operations through depleted reservoirs, which were drilled in different oilfields. The economic aspect associated with potential risks for drilling a horizontal well in depleted reservoirs is also discussed. The most updated research and development findings for infill drilling are summarized in the article. It is recommended to use wellbore strengthening techniques while drilling a horizontal well through highly depleted formations. This will allow using higher mud weight to control unstable shales while drilling through the production zone. Managed Pressure Drilling should be considered as the last option for highly depleted formations because it will require a greater level of investment which is not going to have a superior rate of return due to the lack of high deliverability of the reservoir. Using rotary steerable systems is favored to reduce risks related to drilling through depleted formations. Precise analysis of different drilling programs allows the drilling team to introduce new technology to reduce cost, improve drilling efficiency and maximize profit. It is the responsibility of the drilling engineer to evaluate different scenarios with all the precautions needed during the planning stage to avoid unexpected issues. The present market conditions and the advancement in technologies for drilling horizontal wells increase the feasibility of producing the depleted reservoirs economically. This paper highlights the challenges in drilling horizontal wells in highly depleted reservoirs and provides means for successfully drilling those wells to reduce risks while drilling


2021 ◽  
Author(s):  
Sukru Merey ◽  
Can Polat ◽  
Tuna Eren

Abstract Currently, many horizontal wells are being drilled in Dadas shales of Turkey. Dadas shales have both oil (mostly) and gas potentials. Thus, hydraulic fracturing operations are being held to mobilize hydrocarbons. Up to 1000 m length horizontal wells are drilled for this purpose. However, there is not any study analyzing wellbore stability and reservoir geomechanics in the conditions of Dadas shales. In this study, the directions of horizontal wells, wellbore stability and reservoir geomechanics of Dadas shales were designed by using well log data. In this study, the python code developed by using Kirsch equations was developed. With this python code, it is possible to estimate unconfined compressive strength in along wellbore at different deviations. By analyzing caliper log, density and porosity logs of Dadas shales, vertical stress of Dadas shales was estimated and stress polygon for these shale was prepared in this study. Then, optimum direction of horizontal well was suggested to avoid any wellbore stability problems. According to the results of this study, high stresses are seen in horizontal directions. In this study, it was found that the maximum horizontal stress in almost the direction of North-South. The results of this study revealed that direction of maximum horizontal stress and horizontal well direction fluid affect the wellbore stability significantly. Thus, in this study, better horizontal well design was made for Dadas shales. Currently, Dadas shales are popular in Turkey because of its oil and gas potential so horizontal drilling and hydraulic fracturing operations are being held. However, in literature, there is no study about horizontal wellbore designs for Dadas shales. This study will be novel and provide information about the horizontal drilling design of Dadas shales.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiguo Shu ◽  
Guochang Wang ◽  
Yang Luo ◽  
Chao Wang ◽  
Yalin Chen ◽  
...  

Shale oil and gas fields usually contain many horizontal wells. The key of 3D structural modeling for shale reservoirs is to effectively utilize all structure-associated data (e.g., formation tops) in these horizontal wells. The inclination angle of horizontal wells is usually large, especially in the lateral section. As a result, formation tops in a horizontal well are located at the distinct lateral positions, while formation tops in a vertical well are usually stacked in the same or similar lateral position. It becomes very challenging to estimate shale layer thickness and structural map of multiple formation surfaces using formation tops in horizontal wells. Meanwhile, the large inclination angle of horizontal wells indicates a complicated spatial relation with shale formation surfaces. The 3D structural modeling using horizontal well data is much more difficult than that using vertical well data. To overcome these new challenges in 3D structural modeling using horizontal well data, we developed a method for 3D structural modeling using horizontal well data. The main process included 1) adding pseudo vertical wells at formation tops to convert the uncoupled formation tops to coupled formation tops as in vertical wells, 2) estimating shale thickness by balancing the shale thickness and dip angle change of a key surface, and 3) detecting horizontal well segments landing in the wrong formations and adding pseudo vertical wells to fix them. We used our improved method to successfully construct two structural models of Longmaxi–Wufeng shale reservoirs at a well pad scale and a shale oil/gas field scale. Our research demonstrated that 3D structural modeling could be improved by maximizing the utilization of horizontal well data, thus optimizing the quality of the structural model of shale reservoirs.


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


2021 ◽  
pp. 1-16
Author(s):  
Scott McKean ◽  
Simon Poirier ◽  
Henry Galvis-Portilla ◽  
Marco Venieri ◽  
Jeffrey A. Priest ◽  
...  

Summary The Duvernay Formation is an unconventional reservoir characterized by induced seismicity and fluid migration, with natural fractures likely contributing to both cases. An alpine outcrop of the Perdrix and Flume formations, correlative with the subsurface Duvernay and Waterways formations, was investigated to characterize natural fracture networks. A semiautomated image-segmentation and fracture analysis was applied to orthomosaics generated from a photogrammetric survey to assess small- and large-scale fracture intensity and rock mass heterogeneity. The study also included manual scanlines, fracture windows, and Schmidt hammer measurements. The Perdrix section transitions from brittle fractures to en echelon fractures and shear-damage zones. Multiple scales of fractures were observed, including unconfined, bedbound fractures, and fold-relatedbed-parallel partings (BPPs). Variograms indicate a significant nugget effect along with fracture anisotropy. Schmidt hammer results lack correlation with fracture intensity. The Flume pavements exhibit a regionally extensive perpendicular joint set, tectonically driven fracturing, and multiple fault-damage zones with subvertical fractures dominating. Similar to the Perdrix, variograms show a significant nugget effect, highlighting fracture anisotropy. The results from this study suggest that small-scale fractures are inherently stochastic and that fractures observed at core scale should not be extrapolated to represent large-scale fracture systems; instead, the effects of small-scale fractures are best represented using an effective continuum approach. In contrast, large-scale fractures are more predictable according to structural setting and should be characterized robustly using geological principles. This study is especially applicable for operators and regulators in the Duvernay and similar formations where unconventional reservoir units abut carbonate formations.


2021 ◽  
Author(s):  
Andrew Boucher ◽  
Josef Shaoul ◽  
Inna Tkachuk ◽  
Mohammed Rashdi ◽  
Khalfan Bahri ◽  
...  

Abstract A gas condensate field in the Sultanate of Oman has been developed since 1999 with vertical wells, with multiple fractures targeting different geological units. There were always issues with premature screenouts, especially when 16/30 or 12/20 proppant were used. The problems placing proppant were mainly in the upper two units, which have the lowest permeability and the most heterogeneous lithology, with alternating sand and shaly layers between the thick competent heterolith layers. Since 2015, a horizontal well pilot has been under way to determine if horizontal wells could be used for infill drilling, focusing on the least depleted units at the top of the reservoir. The horizontal wells have been plagued with problems of high fracturing pressures, low injectivity and premature screenouts. This paper describes a comprehensive analysis performed to understand the reasons for these difficulties and to determine how to improve the perforation interval selection criteria and treatment approach to minimize these problems in future horizontal wells. The method for improving the success rate of propped fracturing was based on analyzing all treatments performed in the first seven horizontal wells, and categorizing their proppant placement behavior into one of three categories (easy, difficult, impossible) based on injectivity, net pressure trend, proppant pumped and screenout occurrence. The stages in all three categories were then compared with relevant parameters, until a relationship was found that could explain both the successful and unsuccessful treatments. Treatments from offset vertical wells performed in the same geological units were re-analyzed, and used to better understand the behavior seen in the horizontal wells. The first observation was that proppant placement challenges and associated fracturing behavior were also seen in vertical wells in the two uppermost units, although to a much lesser extent. A strong correlation was found in the horizontal well fractures between the problems and the location of the perforated interval vertically within this heterogeneous reservoir. In order to place proppant successfully, it was necessary to initiate the fracture in a clean sand layer with sufficient vertical distance (TVT) to the heterolith (barrier) layers above and below the initiation point. The thickness of the heterolith layers was also important. Without sufficient "room" to grow vertically from where it initiates, the fracture appears to generate complex geometry, including horizontal fracture components that result in high fracturing pressures, large tortuosity friction, limited height growth and even poroelastic stress increase. This study has resulted in a better understanding of mechanisms that can make hydraulic fracturing more difficult in a horizontal well than a vertical well in a laminated heterogeneous low permeability reservoir. The guidelines given on how to select perforated intervals based on vertical position in the reservoir, rather than their position along the horizontal well, is a different approach than what is commonly used for horizontal well perforation interval selection.


2013 ◽  
Author(s):  
Andy Sookprasong ◽  
Sergey Mikhalovich Stolyarov ◽  
Mark Sargon

2017 ◽  
Vol 145 (4) ◽  
pp. 1149-1159 ◽  
Author(s):  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Michael C. Pitts ◽  
Lamont R. Poole ◽  
Marion Maturilli

Abstract The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.


Sign in / Sign up

Export Citation Format

Share Document