scholarly journals Multilevel Cloud Structures over Svalbard

2017 ◽  
Vol 145 (4) ◽  
pp. 1149-1159 ◽  
Author(s):  
Andreas Dörnbrack ◽  
Sonja Gisinger ◽  
Michael C. Pitts ◽  
Lamont R. Poole ◽  
Marion Maturilli

Abstract The presented picture of the month is a superposition of spaceborne lidar observations and high-resolution temperature fields of the ECMWF Integrated Forecast System (IFS). It displays complex tropospheric and stratospheric clouds in the Arctic winter of 2015/16. Near the end of December 2015, the unusual northeastward propagation of warm and humid subtropical air masses as far north as 80°N lifted the tropopause by more than 3 km in 24 h and cooled the stratosphere on a large scale. A widespread formation of thick cirrus clouds near the tropopause and of synoptic-scale polar stratospheric clouds (PSCs) occurred as the temperature dropped below the thresholds for the existence of cloud particles. Additionally, mountain waves were excited by the strong flow at the western edge of the ridge across Svalbard, leading to the formation of mesoscale ice PSCs. The most recent IFS cycle using a horizontal resolution of 8 km globally reproduces the large-scale and mesoscale flow features and leads to a remarkable agreement with the wave structure revealed by the spaceborne observations.

2016 ◽  
Author(s):  
Martin Ebert ◽  
Ralf Weigel ◽  
Konrad Kandler ◽  
Gebhard Günther ◽  
Sergej Molleker ◽  
...  

Abstract. Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board of the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed in a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSC). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate-, Fe-rich-, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe early winter, during the late winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate/carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm additionally the presence of soot was proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of such large refractory particles in the stratosphere, and the fact that these particles were not observed in the particle samples (upper size limit about 5 µm) taken during PSC events, strengthen the hypothesis that such particles are present in the polar stratosphere in late winter and that they can provide a surface for heterogeneous condensation during PSC formation.


2019 ◽  
Author(s):  
Marleen Braun ◽  
Jens-Uwe Grooß ◽  
Wolfgang Woiwode ◽  
Sören Johansson ◽  
Michael Höpfner ◽  
...  

Abstract. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC/GW-LCYLCE II/SALSA) campaign from December 2015 to March 2016 allow an investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. For the first time vertical cross-sections of nitric acid (HNO3) along the flight track and tracer-tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with strongly enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 11 km in January and nitrified filaments persisting until the middle of March. Narrow streaks of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, a nitrification of the LMS between 5.0 ppbv and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. This extent of nitrification has never been observed before in the Arctic lowermost stratosphere. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of maximum HNO3 mixing ratios derived from the GLORIA observations as well as the enhancement at lower altitudes. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on NAT), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) mostly improve the agreement with the GLORIA observations. The sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important towards the end of the winter.


2019 ◽  
Author(s):  
Antoine Berchet ◽  
Isabelle Pison ◽  
Patrick M. Crill ◽  
Brett Thornton ◽  
Philippe Bousquet ◽  
...  

Abstract. Due to the large variety and heterogeneity of sources in remote areas hard to document, the Arctic regional methane budget remain very uncertain. In situ campaigns provide valuable data sets to reduce these uncertainties. Here we analyse data from the SWERUS-C3 campaign, on-board the icebreaker Oden, that took place during summer 2014 in the Arctic Ocean along the Northern Siberian and Alaskan shores. Total concentrations of methane, as well as isotopic ratios were measured continuously during this campaign for 35 days in July and August 2014. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and hemispheric transport structures. A simple inversion system helped constraining source signatures from wetlands in Siberia and Alaska and oceanic sources, as well as the isotopic composition of lower stratosphere air masses. The variation in the signature of low stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a large share of the observed variability in isotopic ratios. These points at required efforts to better simulate large scale transport and chemistry patterns to use isotopic data in remote areas. It is found that constant and homogeneous source signatures for each type of emission in the region (mostly wetlands and oil and gas industry) is not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient in source signatures is highlighted between Siberian and Alaskan wetlands, the later ones having a lighter signatures than the first ones. Arctic continental shelf sources are suggested to be a mixture of methane from a dominant thermogenic origin and a secondary biogenic one, consistent with previous in-situ isotopic analysis of seepage along the Siberian shores.


2016 ◽  
Vol 16 (13) ◽  
pp. 8405-8421 ◽  
Author(s):  
Martin Ebert ◽  
Ralf Weigel ◽  
Konrad Kandler ◽  
Gebhard Günther ◽  
Sergej Molleker ◽  
...  

Abstract. Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate ∕ carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ∼  5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.


Author(s):  
Dhruv Balwada ◽  
Qiyu Xiao ◽  
Shafer Smith ◽  
Ryan Abernathey ◽  
Alison R. Gray

AbstractIt has been hypothesized that submesoscale flows play an important role in the vertical transport of climatically important tracers, due to their strong associated vertical velocities. However, the multi-scale, non-linear, and Lagrangian nature of transport makes it challenging to attribute proportions of the tracer fluxes to certain processes, scales, regions, or features. Here we show that criteria based on the surface vorticity and strain joint probability distribution function (JPDF) effectively decomposes the surface velocity field into distinguishable flow regions, and different flow features, like fronts or eddies, are contained in different flow regions. The JPDF has a distinct shape and approximately parses the flow into different scales, as stronger velocity gradients are usually associated with smaller scales. Conditioning the vertical tracer transport on the vorticity-strain JPDF can therefore help to attribute the transport to different types of flows and scales. Applied to a set of idealized Antarctic Circumpolar Current simulations that vary only in horizontal resolution, this diagnostic approach demonstrates that small-scale strain dominated regions that are generally associated with submesoscale fronts, despite their minuscule spatial footprint, play an outsized role in exchanging tracers across the mixed layer base and are an important contributor to the large-scale tracer budgets. Resolving these flows not only adds extra flux at the small scales, but also enhances the flux due to the larger-scale flows.


2004 ◽  
Vol 4 (5) ◽  
pp. 6789-6822
Author(s):  
K. Krüger ◽  
U. Langematz ◽  
J. L. Grenfell ◽  
K. Labitzke

Abstract. The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a high spatial and temporal resolution. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new result of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamer (e.g. Offermann et al., 1999) and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of the observed negative ozone trend in northern mid-latitudes, the global occurrence of such streamers were calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen, which in comparison to other methods produced the best result in this study. The analysis of the months October–May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited about a four times higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge) in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003). Interesting for the total ozone loss in mid-latitudes is the consideration of the lower stratosphere, where strongest ozone depletion is observed at polar latitudes (WMO, 2003). In this particular region the FUB-CMAM simulated a climatological maximum of 10% occurrence of tropical-subtropical streamers over East-Asia/West Pacific and the Atlantic during early- and mid-winter. The results of this paper demonstrate that the regular occurrence of stratospheric streamers e.g., large-scale mixing processes of tropical-subtropical and polar vortex air masses into mid-latitudes, could play a significant role on the strength and variability of the observed total ozone decrease at mid-latitudes and should not be neglected in future climate change studies.


2020 ◽  
Vol 20 (6) ◽  
pp. 3987-3998 ◽  
Author(s):  
Antoine Berchet ◽  
Isabelle Pison ◽  
Patrick M. Crill ◽  
Brett Thornton ◽  
Philippe Bousquet ◽  
...  

Abstract. Characterizing methane sources in the Arctic remains challenging due to the remoteness, heterogeneity and variety of such emissions. In situ campaigns provide valuable datasets to reduce these uncertainties. Here we analyse data from the summer 2014 SWERUS-C3 campaign in the eastern Arctic Ocean, off the shore of Siberia and Alaska. Total concentrations of methane, as well as relative concentrations of 12CH4 and 13CH4, were measured continuously during this campaign for 35 d in July and August. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and hemispheric transport structures. A simple inversion system helped constrain source signatures from wetlands in Siberia and Alaska, and oceanic sources, as well as the isotopic composition of lower-stratosphere air masses. The variation in the signature of lower-stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a large share of the observed variability in isotopic ratios. These results point towards necessary efforts to better simulate large-scale transport and chemistry patterns to make relevant use of isotopic data in remote areas. It is also found that constant and homogeneous source signatures for each type of emission in a given region (mostly wetlands and oil and gas industry in our case at high latitudes) are not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient in source signatures is highlighted between Siberian and Alaskan wetlands, the latter having lighter signatures (more depleted in 13C). Finally, our results suggest that marine emissions of methane from Arctic continental-shelf sources are dominated by thermogenic-origin methane, with a secondary biogenic source as well.


2017 ◽  
Author(s):  
Jens Hildebrand ◽  
Gerd Baumgarten ◽  
Jens Fiedler ◽  
Franz-Josef Lübken

Abstract. We present an extensive data set of simultaneous temperature and wind measurements in the Arctic middle atmosphere. It consists of more than 300 h of Doppler Rayleigh lidar observations obtained during three January seasons 2012, 2014, and 2015, and covers the altitude range from 30 km up to about 85 km. The data set reveals large year-to-year variations of month-mean temperatures and winds, which in 2012 are caused by a sudden stratospheric warming. The temporal evolution of winds and temperatures after that warming are studied over a period of two weeks, showing an elevated stratopause and the reformation of the polar vortex. The month-mean temperatures and winds are compared to data extracted from the Integrated Forecast System of the European Centre for Medium-Range Weather Forecast (ECMWF) and the Horizontal Wind Model (HWM07). We find mean temperature, zonal wind, and meridional wind differences of up to 20 K, 20 m s−1, and 5 m s−1, respectively, between lidar observations and ECMWF data and of up to 30 m s−1 between lidar observations and HWM07 data. From the fluctuations of temperatures and winds within single nights we extract the potential and kinetic gravity wave energy density (GWED) per unit mass. It shows that the kinetic GWED is typically 5 to 10 times larger than the potential GWED, the total GWED increases with altitude with a scale height of ≈ 16 km. Since temporal fluctuations of winds and temperatures are underestimated in ECMWF, the total GWED is underestimated as well by a factor of 3 to 10 above 50 km altitude. Similarly we estimate the energy density per unit mass for large-scale waves LWED) from the fluctuations of night-mean temperatures and winds. The total LWED. The ratio of kinetic to potential LWED varies with altitude over two orders of magnitude. LWEDs from ECWMF data show similar results as the lidar data. From the comparison of GWED and LWED follows that large-scale waves carry about 2 to 6 times more energy than gravity waves.


2021 ◽  
Author(s):  
Matthias Tesche ◽  
Peggy Achtert ◽  
Michael Pitts

<p>Spaceborne observations of Polar Stratospheric Clouds (PSCs) with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provide a comprehensive picture of the occurrence of Arctic and Antarctic PSCs as well as their microphysical properties. However, advances in understanding PSC microphysics also require measurements with ground-based instruments, which are often superior to CALIOP in terms of, e.g. time resolution, measured parameters, and signal-to-noise ratio. This advantage is balanced by the location of ground-based PSC observations and their dependence on tropospheric cloudiness. CALIPSO observations during the boreal winters from December 2006 to February 2018 and the austral winters 2012 and 2015 are used to assess the effect of tropospheric cloudiness and other measurement-inhibiting factors on the representativeness of ground-based PSC observations with lidar in the Arctic and Antarctic, respectively. Information on tropospheric and stratospheric clouds from the CALIPSO Cloud Profile product (05kmCPro version 4.10) and the PSC mask version 2, respectively, is combined on a profile-by-profile basis to identify conditions under which a ground-based lidar is likely to perform useful measurements for the analysis of PSC occurrence. It is found that the location of a ground-based measurement together with the related tropospheric cloudiness can have a profound impact on the derived PSC statistics and that these findings are rarely in agreement with polar-wide results from CALIOP observations. Considering the current polar research infrastructure, it is concluded that the most suitable sites for the expansion of capabilities for ground-based lidar observations of PSCs are Summit and Villum in the Arctic and Mawson, Troll, and Vostok in the Antarctic.</p>


2005 ◽  
Vol 5 (2) ◽  
pp. 547-562 ◽  
Author(s):  
K. Krüger ◽  
U. Langematz ◽  
J. L. Grenfell ◽  
K. Labitzke

Abstract. The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used. A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999) and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge) in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003). Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003). In the lower stratosphere the FUB-CMAM simulated a climatological maximum of 10% occurrence of tropical-subtropical streamers over East-Asia/West Pacific and the Atlantic during early- and mid-winter. The results of this paper demonstrate that stratospheric streamers e.g. large-scale, tongue-like structures transporting tropical-subtropical and polar vortex air masses into mid-latitudes occur frequently during Arctic winter. They can therefore play a significant role on the strength and variability of the observed total ozone decrease at mid-latitudes and should not be neglected in future climate change studies.


Sign in / Sign up

Export Citation Format

Share Document