Geochemistry in an Integrated Study of Reservoir Compartmentalization at Ewing Bank 873, Offshore Gulf of Mexico

1999 ◽  
Vol 2 (06) ◽  
pp. 520-526 ◽  
Author(s):  
J.D. Edman ◽  
M.K. Burk

Summary Ewing Bank 873 is an offshore Gulf of Mexico field discovered in 1991 in 775 ft of water. The discovery well was drilled on a seismic amplitude anomaly on the flank of a salt withdrawal minibasin. Field development began in 1994, and in mid-1998 daily production from the Bulminella 1 reservoir averaged 40,000 BOPD and 32×106 ft3/D of gas. The Bul 1 reservoir in this combination structural-stratigraphic trap consists of six stacked and overlapping Pliocene turbidite sand lobes. In turn, integration of seismic, well log, geochemical and pressure data indicates these six turbidite lobes comprise three compartments. All of the various data types give constraints on different aspects of compartmentalization, but at the stratigraphically complex Ewing Bank 873 field, geochemical analyses provided key information unavailable through any other means. These geochemical analyses were performed as individual wells in the field went on production and immediately provided information regarding fluid communication and reservoir connectivity that was missing from earlier interpretations based solely on seismic and log data. Early recognition of three reservoir compartments using geochemical data also helped constrain preliminary stratigraphic interpretations and provided initial input for flow units and reservoir simulation models. The geochemical information further provided advance notice of economically significant oil quality variations in the three compartments. These fluid variabilities were later substantiated by pressure/volume/temperature analyses and include notable differences in oil gravity, weight percent sulfur, viscosity and solution gas. Integrating all available data shows there are three compartments at Ewing Bank 873 and each compartment comprises different turbidite sand lobes and exhibits its own characteristic pressure regime and fluid properties. The early indications of both compartmentalization and variation in fluid properties by the geochemical analyses contributed significantly to improved field recovery and economics by allowing fewer and better placed wells to be drilled. Introduction Development of deepwater Gulf of Mexico fields is an expensive undertaking that involves considerable analysis and evaluation of both engineering and geologic data. In this context, failure to recognize reservoir compartmentalization can add significantly to field development capital and result in less than optimum reservoir management. For all of these reasons, early recognition of reservoir compartmentalization is advantageous. Traditionally, pressure, seismic and log data have been among the primary tools used to identify compartmentalization. Each of these techniques provides information on a different aspect of reservoir compartmentalization, and the various methodologies work best when integrated. For example, at Ewing Bank 873 the pre-drill seismic data provide the gross geometry and lateral distribution of the different turbidite sand packages,1 but the seismic cannot resolve individual sand lobes. Well logs do show individual sand lobes, but in this instance, where turbidite lobes are characterized by compensation-style bedding, correlation of sands is difficult. Pressure data also yield valuable information on reservoir compartmentalization, but long term build-up tests can be expensive to obtain and involve shutting in production. In addition to these techniques, another tool for identifying reservoir compartmentalization that complements the other analyses by providing a direct indication of reservoir fluid continuity is geochemistry. Over the past 10 years, a number of case studies2–10 have clearly demonstrated the value of geochemistry in recognizing reservoir compartmentalization. In particular, geochemical analysis of oils by gas chromatography is an inexpensive technique requiring minimal turnaround time that provides information on compartmentalization early in the history of a reservoir. In turn, early recognition of compartmentalization can help in the placement of development wells and optimize new field development choices. Beyond early recognition of compartmentalization, geochemical analysis at Ewing Bank 873 also helped constrain reservoir simulations, assisted in correlation of reservoir sand units and aided in understanding oil quality variations within the reservoir. This case history further demonstrates how geochemical analyses provide a unique opportunity to characterize a reservoir from the perspective of the actual reservoir fluids rather than from the perspective of the "container" holding those fluids. However, it is only by integrating all of the reservoir data—geochemical, seismic, log, pressure and stratigraphic—that reservoir management can be optimized. Geologic Setting and Field Description Ewing Bank 873 is a deepwater (775 ft) Gulf of Mexico field that is almost 200 miles due south of New Orleans (Fig. 1) and lies along the flexure trend between the current shelf and continental slope. This field was discovered in 1991 by drilling a seismic amplitude anomaly on the flank of a salt withdrawal minibasin (Fig. 2). The reservoir is a series of six stacked and overlapping Pliocene Bulminella 1 (3.8 Ma) deepwater turbidites. The trap at Ewing Bank 873 is a combination stratigraphic/structural trap formed by updip pinch out of the turbidite sands and by faults on the eastern and western margins of the field. Updip sand pinch out is in turn controlled by an underlying salt diapir.

2010 ◽  
Vol 50 (1) ◽  
pp. 203 ◽  
Author(s):  
John Gorter ◽  
Robert Nicoll ◽  
Andrea Caudullo ◽  
Robyn Purcell ◽  
Kon Kostas

Gas was discovered in intra-Mt Goodwin Sub-group sandstones (Ascalon Formation) of the southeastern Bonaparte Basin in Blacktip–1 in 2001 from a zone characterised by a discrete seismic amplitude anomaly. This integrated study uses wireline logs, cores, cuttings, palynology, micropaleontology and geochemical analyses to determine the depositional environment of the Mt Goodwin Sub-group reservoirs and the source rock potential of this large, latest Permian (Changhsingian) to Early Triassic (Induan Olenekian) section of the Bonaparte Basin in northern Australia. Specific outcomes include a better understanding of the Early Triassic reservoir sandstone depositional environment and recognition of marker horizons on electric logs and seismic profiles, resulting in a more consistent regional interpretive framework for the uppermost Permian (Changhsingian) and Early Triassic (Induan Olenekian), in the Bonaparte Basin.


1992 ◽  
Vol 10 (4-5) ◽  
pp. 259-280 ◽  
Author(s):  
Robert L. Kidney ◽  
Ronald S. Silver ◽  
H.A. Hussein

Utilization of 3-D seismic data and Direct Hydrocarbon Indicators led to the successful drilling of appraisal and development wells in the Gulf of Mexico block South Timbalier 198 (ST 198). These seismic technologies, which are routinely used by Oryx Energy Company, significantly reduced the time and cost to appraise the ST 198 discovery. Based on 2-D seismic mapping, a Pliocene Lower Buliminella (L BUL) prospect was drilled in ST 198. Although the expected reservoir was not found, an Upper Buliminella (U BUL) gas sandstone was encountered. An appraisal well of the U BUL interval confirmed this discovery. Following the drilling of these two wells, it became apparent that the structural complexities and the seismic amplitude anomalies of the area could not be adequately resolved using the 2-D seismic grid. A 3-D seismic survey was shot to delineate the discovery and evaluate the remaining potential of the South Timbalier Block 198 (ST 198). Direct Hydrocarbon Indicators (DHIs), which are seismic anomalies resulting from the hydrocarbon effect on rock properties, are generally expected from these age sands. While the 3-D survey shows a seismic amplitude anomaly associated with the U BUL reservoir, the areal extent of the seismic anomaly did not match the findings of the two wells. A DHI study was performed to determine if this inconsistency could be explained and if the amplitude anomaly could be used in the well planning. The two key steps which confirmed that this amplitude anomaly is a DHI were properly calibrating the seismic data to the well control and determining the theoretical seismic response of the gas sandstones. The DHI study along with the 3-D mapping led to the successful development of the ST 198 U BUL reservoir and to setting up a successful adjacent fault block play. Finally, 3-D mapping also identified a L BUL trap updip from the original L BUL prospect which resulted in a successful drilling effort.


Author(s):  
Jingyun Cheng ◽  
Peimin Cao ◽  
Sherry Xiang

This paper presents a design of a deep draft wet tree semi-submersible with steel catenary risers (SCRs) for 4,000 ft water depth in the Gulf of Mexico (GoM). The integrated system of hull, mooring, and SCRs is discussed. The design challenges of SCRs are highlighted and results of SCR strength and fatigue performance are presented. A comparison study on strength performance of various types of risers under the GoM environment criteria is performed. The assessment of extreme strength responses from various riser and hull configurations provide guidelines for the best hull selection. Sour service requirement creates challenges in the fatigue design of the production riser system at such water depth. Integrated mooring and riser design provides an optimum solution. It’s found that the majority of riser fatigue damage at touch down zone is generated by wave loading & resultant vessel motion and vortex induced vessel motion (VIM). Several fatigue mitigation methods are suggested to improve the riser fatigue performance, such as planned vessel repositioning. The conclusion of this study is that deep draft wet tree semi-submersible with SCRs can be a cost effective solution for field development at 4,000 ft water depth in the Gulf of Mexico.


2019 ◽  
Vol 26 (3) ◽  
pp. 434-447
Author(s):  
Amir M. S. Lala ◽  
Amr Talaat

The offshore Nile Delta Basin is considered as one of the most promising hydrocarbon provinces in Egypt, with an excellent potential for gas and condensate reserves following future exploration. Most of the discoveries in this basin, such as the reservoirs of the Upper Miocene and the Middle–Upper Pliocene, have been enabled by the use of a direct hydrocarbon indicator (DHI), based on a class III seismic amplitude v. offset (AVO) anomaly. However, there are gas-bearing formations in the Lower Pliocene that have been successfully tested where the sand did not show any seismic amplitude anomaly in full stacks or in near- and far-offset sub-stacks. The AVO analysis of this sand reservoir is referred to as AVO class II-P. Another case of a subtle AVO class I anomaly in a Lower Pliocene gas reservoir has also been tested by three wells.These variations in AVO types push us to find a new methodology to reduce the risk of unsuccessful exploration wells, mainly using seismic data. The enhanced AVO pseudo-gradient attribute (EAP) has previously been used in other studies, mainly to highlight AVO class III anomalies. However, in the present paper, we demonstrate a workflow to identify all the principal AVO classes observed in this province. Computing the EAP attribute from our data, we find that AVO class I has negative EAP values, while the other classes have positive values. Class III and classes II and II-P may be distinguished from each other as the former yields a strong positive EAP value, whereas the latter two classes yield weak EAP responses.After determining the AVO class, we define and use a new model attribute, herein termed NM, to differentiate between gas- and water-bearing formations for each class of AVO anomaly found in this province. This new method was successfully tested in many areas in the Nile Delta Basin, where it has helped to identify subtle anomalies and thereby open the gate for further exploration activities in the area.


2019 ◽  
Vol 38 (10) ◽  
pp. 754-761 ◽  
Author(s):  
Liqin Sang ◽  
Uwe Klein-Helmkamp ◽  
Andrew Cook ◽  
Juan R. Jimenez

Seismic direct hydrocarbon indicators (DHIs) are routinely used in the identification of hydrocarbon reservoirs and in the positioning of drilling targets. Understanding seismic amplitude reliability and character, including amplitude variation with offset (AVO), is key to correct interpretation of the DHI and to enable confident assessment of the commercial viability of the reservoir targets. In many cases, our interpretation is impeded by limited availability of data that are often less than perfect. Here, we present a seismic quantitative interpretation (QI) workflow that made the best out of imperfect data and managed to successfully derisk a multiwell drilling campaign in the Auger and Andros basins in the deepwater Gulf of Mexico. Data challenges included azimuthal illumination effects caused by the presence of the Auger salt dome, sand thickness below tuning, and long-term production effects that are hard to quantify without dedicated time-lapse seismic. In addition, seismic vintages with varying acquisition geometries led to different QI predictions that further complicated the interpretation story. Given these challenges, we implemented an amplitude derisking workflow that combined ray-based illumination assessments and prestack data observations to guide selection of the optimal seismic data set(s) for QI analysis. This was followed by forward modeling to quantify the fluid saturation and sand thickness effects on seismic amplitude. Combined with structural geology analysis of the well targets, this workflow succeeded in significantly reducing the risk of the proposed opportunities. The work also highlighted potential pitfalls in AVO interpretation, including AVO inversion for the characterization of reservoirs near salt, while providing a workflow for prestack amplitude quality control prior to inversion. The workflow is adaptable to specific target conditions and can be executed in a time-efficient manner. It has been applied to multiple infill well opportunities, but for simplicity reasons here, we demonstrate the application on a single well target.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 903-907 ◽  
Author(s):  
Benjamin White ◽  
Balan Nair ◽  
Alvin Bayliss

We give an explanation of the phenomenon, sometimes observed in exploration seismology, of anomalously large amplitudes which seem inconsistent with the traveltime curves when the data are interpreted as resulting from reflections from smooth interfaces of piece‐wise homogeneous media. Monte Carlo simulations illustrate how this phenomenon can occur when the homogeneous media have small, smooth, random velocity fluctuations which vary on a length scale which is large compared with a wavelength but small compared with the propagation distance. Synthetic gathers of reflections from a single plane‐stratified layer with and without the random lateral inhomogeneities produce an amplitude anomaly which is related to the random occurrence of a caustic; limit theorems for stochastic differential equations provide a theory. Theoretical curves, giving the probability of first occurrence of this phenomenon along a ray as a function of propagation distance (for plane waves and for point and line sources in two and three dimensions) are qualitatively similar: they have an initial flat portion where amplitude anomalies are very unlikely, rise to a peak at the distance most likely for first occurrence, and decay exponentially to zero, thus predicting that the phenomenon will occur at some finite distance with probability one.


2001 ◽  
Vol 4 (04) ◽  
pp. 250-259
Author(s):  
K.T. Chambers ◽  
W.S. Hallager ◽  
C.S. Kabir ◽  
R.A. Garber

Summary The combination of pressure-transient and production-log (PL) analyses has proved valuable in characterizing reservoir flow behavior in the giant Tengiz field. Among the important findings is the absence of clear dual-porosity flow. This observation contradicts an earlier interpretation that the reservoir contains a well-connected, natural fracture network. Fracturing and other secondary porosity mechanisms play a role in enhancing matrix permeability, but their impact is insufficient to cause dual-porosity flow behavior to develop. Flow profiles measured with production logs consistently show several thin (10 to 30 ft) zones dominating well deliverability over the thick (up to 1,040 ft) perforation intervals at Tengiz. A comparison of PL results and core descriptions reveals a good correlation between high deliverability zones and probable exposure surfaces in the carbonate reservoir. Contrary to earlier postulations, results obtained from pressure-transient and PL data at Tengiz do not support rate-sensitive productivity indices (PI's). Inclusion of rate variations in reconciling buildup and drawdown test results addressed this issue. We developed wellbore hydraulic models and calibrated them with PL data for extending PI results to wells that do not have measured values. A simplified equation-of-state (EOS) fluid description was an important component of the models because the available black-oil fluid correlations do not provide reliable results for the 47°API volatile Tengiz oil. Clear trends in reservoir quality emerge from the PI results. Introduction A plethora of publications exists on transient testing. However, only a few papers address the issue of combining multidisciplinary data to understand reservoir flow behavior (Refs. 1 through 4 are worthy of note). We used a synergistic approach by combining geology, petrophysics, transient tests, PL's, and wellbore-flow modeling to characterize the reservoir flow behavior in the Tengiz field. Understanding this flow behavior is crucial to formulating guidelines for reservoir management. Permeability estimation from pressure-transient data is sensitive to the effective reservoir thickness contributing to flow. Unfortunately, difficulties associated with the calibration of old openhole logs, sparse core coverage, and a major diagenetic overprint of solid bitumen combine to limit the identification of an effective reservoir at Tengiz based on openhole log data alone. Consequently, PL's have been used to identify an effective reservoir in terms of its flow potential. A limitation of production logs is that they only measure fluid entering the wellbore and are not necessarily indicative of flow in the reservoir away from the well. Pressure data from buildup and drawdown tests, on the other hand, provide insights into flow behavior both near the well and farther into the reservoir. The combination of pressure-transient analysis using simultaneous downhole pressure and flow-rate data along with measured production profiles provides an opportunity to reconcile near-wellbore and in-situ flow behavior. Expansion of reservoir fluids along with formation compaction provides the current drive mechanism at Tengiz because the reservoir is undersaturated by over 8,000 psia. As the field is produced, reservoir stresses will increase in response to pressure decreases.5 Increased stresses can significantly reduce permeability if natural fractures provide the primary flow capacity in the reservoir. Wells producing at high drawdowns provide an opportunity to investigate the pressure sensitivity of fractures within the near-wellbore region. Early interpretations of pressure-transient tests at Tengiz uncovered a significant discrepancy between buildup and drawdown permeability, despite efforts to carefully control flow rates during the tests. Drawdown permeabilities typically exceeded the buildup results by 20 to 50%. Although this finding appears counterintuitive to the expectation that drawdowns (that is, higher stresses) would lead to lower permeability, it indicated a possible stress dependence on well deliverability. The method proposed by Kabir6 to reconcile differences between drawdown and buildup results proved useful in addressing this issue. The opportunities to collect PL and downhole pressure data at Tengiz are limited by mechanical conditions in some wells and by the requirement to meet the processing capacity of the oil and gas plant. On the other hand, accurate wellhead-pressure and flow-rate data are routinely available. Wellbore hydraulic calculations provide a basis for calculating flowing bottomhole pressures (FBHP's) with the available surface data. Calculated FBHP's can be combined with available reservoir pressure data to determine PI's for wells lacking bottomhole measurements. The ability to compute accurate fluid properties is critical in applying this approach. Unfortunately, the black-oil correlations routinely used in wellbore hydraulic calculations7–9 do not provide reliable results for the volatile Tengiz oil. We obtained good agreement between laboratory measurements of fluid properties and calculated values using a simplified EOS.10 Surface and bottomhole data collected during PL operations provide a basis for validating wellbore hydraulic calculations. Networks of natural fractures can dominate the producing behavior of carbonate reservoirs such as Tengiz. Early identification of fractured reservoir behavior is critical to the successful development of these types of reservoirs.11 We present an approach for resolving reservoir flow behavior by combining production profiles, pressure-transient tests, and wellbore hydraulic calculations. Furthermore, we discuss the PL procedures developed to allow acquisition of the data required for all three types of analyses in a single logging run. Field examples from Tengiz highlight the usefulness of this approach.


Geophysics ◽  
1982 ◽  
Vol 47 (12) ◽  
pp. 1693-1705
Author(s):  
Alan O. Ramo ◽  
James W. Bradley

Spatially discontinuous high‐amplitude seismic reflections were encountered in seismic data acquired in the early 1970s in northeast Louisiana and southwest Arkansas. Large acoustic impedance contrasts are known to result from gaseous hydrocarbon accumulations. However, amplitude anomalies may also result from large density and velocity contrasts which are geologically unrelated to hydrocarbon entrapment. A well drilled on the northeast Louisiana amplitude anomaly encountered 300 ft of rhyolite at a depth of 6170 ft. Subsequent gravity and total field magnetic profiles across the feature revealed the presence of 0.2 mgal and 17 gamma anomalies, respectively. The measured magnetic susceptibility of the rhyolite was 0.0035 emu and the measured density contrast was [Formula: see text]. Model studies based on the seismically determined areal extent of the anomaly and the measured thickness of rhyolite accounted for the observed gravity and magnetic anomalies. The southwest Arkansas amplitude anomaly was a sheet‐like reflection which terminated to the north and west within the survey area. Two north‐south gravity profiles exhibited a negative character over the sheet‐like reflector but did not exhibit a clear spatial correlation with the north limit of the seismic anomaly. Two north‐south magnetic profiles exhibited tenuous 4 gamma anomalies which appeared to be spatially correlated with the interpreted north edge of the seismic anomaly. A subsequent wildcat well encountered no igneous material but did penetrate 200 ft of salt at about 7500 ft. Reassessment of the gravity and magnetic data indicated that this seismic amplitude anomaly is not attributable to an intrasedimentary igneous source; it suggested a salt‐related 0.2 to 0.3 mgal minimum coextensive with the observed seismic amplitude anomaly. Present amplitude analysis technology would treat these seismic data with suspicion. However, gravity and magnetic data acquisition can provide a relatively inexpensive means for evaluation and verification of amplitude anomalies and thus should be an adjunct for land seismic exploration utilizing amplitude analysis.


Sign in / Sign up

Export Citation Format

Share Document