Modeling Coupled Fracture-Matrix Fluid Flow in Geomechanically Simulated Fracture Networks

2005 ◽  
Vol 8 (04) ◽  
pp. 300-309 ◽  
Author(s):  
Zeno G. Philip ◽  
James W. Jennings ◽  
Jon E. Olson ◽  
Stephen E. Laubach ◽  
Jon Holder

Summary In conventional reservoir simulations, gridblock permeabilities are frequently assigned values larger than those observed in core measurements to obtain reasonable history matches. Even then, accuracy with regard to some aspects of the performance such as water or gas cuts, breakthrough times, and sweep efficiencies may be inadequate. In some cases, this could be caused by the presence of substantial flow through natural fractures unaccounted for in the simulation. In this paper, we present a numerical investigation into the effects of coupled fracture-matrix fluid flow on equivalent permeability. A fracture-mechanics-based crack-growth simulator, rather than a purely stochastic method, was used to generate fracture networks with realistic clustering, spacing, and fracture lengths dependent on Young's modulus, the subcritical crack index, the bed thickness, and the tectonic strain. Coupled fracture-matrix fluid-flow simulations of the resulting fracture patterns were performed with a finite-difference simulator to obtain equivalent permeabilities that can be used in a coarse-scale flow simulation. The effects of diagenetic cements completely filling smaller aperture fractures and partially filling larger aperture fractures were also studied. Fractures were represented in finite-difference simulations both explicitly as grid cells and implicitly using nonneighbor connections (NNCs) between grid cells. The results indicate that even though fracture permeability is highly sensitive to fracture aperture, the computed equivalent permeabilities are more sensitive to fracture patterns and connectivity. Introduction High-permeability fracture networks in a matrix system can create high-conductivity channels for the flow of fluids through a reservoir, producing larger flow rates and, therefore, larger apparent permeabilities. The presence of fractures can also cause early breakthrough of the displacing fluid and lead to poorer sweep efficiencies in displacement processes. A better understanding of reservoir performance in such cases may be obtained by including the details of the fluid flow in fractures in a coupled fracture-matrix reservoir flow model. It is very difficult to directly measure interwell fracture-network geometry in sufficient detail to model its effect on reservoir behavior. Thus, most modeling approaches have been statistical, using data from outcrop and wellbore observations to determine distributions of fracture attributes such as fracture length, spacing, and aperture to randomly populate a field. In this paper, we use a mechanistic approach to generate the fracture patterns. Attributes of the fracture network depend on the applied boundary conditions and material properties.

2006 ◽  
Vol 9 (05) ◽  
pp. 513-520 ◽  
Author(s):  
Yu Ding ◽  
Remy Basquet ◽  
Bernard Bourbiaux

Summary One difficulty in fracture upscaling for field-scale dual-porosity reservoir simulation is the determination of equivalent gridblock fracture permeability, which depends on the type of boundary conditions imposed on the discrete-fracture-network (DFN) simulation. Actually, classical upscaling procedures usually are based on linearly varying pressure boundary conditions, which cannot capture the near-well flow behavior. As a result, the well productivity calculated by a dual-porosity flow simulator can be very different from that calculated on a DFN model. This paper proposes a near-well fracture-upscaling procedure based on the geological DFN model to improve the accuracy of well productivity in fractured-reservoir simulators. This procedure enables us to represent the actual flow through the fractures and the exchanges between matrix and fractures in the well vicinity. On the basis of the computed near-well flow pattern, equivalent fracture transmissibilities as well as numerical well indices are determined and assigned to the gridblocks of the dual-porosity reservoir simulator. The reliability and necessity of using the near-well upscaling procedure are demonstrated by examples. Introduction Advanced characterization methodologies are now able to provide realistic models of geological fracture networks (Cacas et al. 2001). In addition, production logging and transient well tests can be simulated with DFN models to validate the geological fracture-network geometry and calibrate the hydraulic properties of fractures (Sarda et al. 2002). However, because of computational limitations, the complex geological DFN model cannot be used straightforwardly to simulate a multiphase-flow production scenario at field scale (Bourbiaux et al. 2002). For such simulations, a dual-porosity reservoir simulator is typically used. The dual-porosity reservoir model, using large gridblocks to discretize the whole reservoir, is a conceptual representation of the actual geology of the fractured medium. The flow properties of the fracture network are then homogenized on gridblocks through upscaling procedures. The upscaling of fracture properties is the problem of translating the geological and hydraulic description of fracture networks into reservoir-simulation parameters. The dual-porosity model requires the determination of equivalent fracture permeability and equivalent matrix-block dimensions or shape factors (Bourbiaux et al. 1997; Sarda et al. 1997). This paper discusses methodologies for upscaling the permeability of a fracture network, especially in the vicinity of the well. Upscaling of fracture permeability has been studied extensively. The commonly used method is numerical, based on flow simulation on a model of the actual fracture network with specific boundary conditions to compute an equivalent gridblock permeability (Sarda et al. 1997). Other methods were also developed; for example, Oda (1985) proposed an analytical equation to calculate the fracture-permeability tensor, and Lough et al. (1997) presented an approach using the boundary-element method, which integrates the contribution of matrix in the equivalent permeability of the fractured medium. When using a numerical approach to determine the equivalent permeability of a fracture network, the upscaled result depends on the type of boundary conditions imposed in the flow simulation. Actually, classical upscaling procedures are usually based on flow simulation in a parallelepipedic model with linear-type pressure boundary conditions, which cannot capture the near-well flow behavior. As a result, the well productivity calculated by a dual-porosity flow simulator can be very different from that calculated on a near-wellbore DFN model.


Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050013
Author(s):  
RICHENG LIU ◽  
LIYUAN YU ◽  
YANG GAO ◽  
MING HE ◽  
YUJING JIANG

This study proposed analytical solutions for permeability of a fractal-like tree network model with fractures having variable widths, which has not been reported before, if any. This model is more realistic with natural fracture networks than the traditional constant width fracture network models. The results show that considering fracture width variations decreases the permeability. Taking the fracture width ratio that equals to 0.6 and the total number of branching levels that equals to 30 as an example, the permeability decreases by more than three orders of magnitude with respect to that of a constant width fracture network model. The fracture length ratio plays a more significant role in permeability when it is larger than 0.8 than that is less than 0.8. The permeability is more sensitive to the fracture aperture ratio that is less than 0.8. When the total number of branching levels is large (i.e. 30), the permeability changes significantly (i.e. more than three orders of magnitude); whereas when the total number of branching levels is small (i.e. 5), the permeability varies in a small range (i.e. less than one order of magnitude). When taking into account the relationships among fracture length ratio, fracture aperture ratio and fracture width ratio, the parameters can be easily obtained and analytical solutions for permeability can also be easily derived. The empirical function for predicting critical hydraulic gradient is proposed, which can be used to estimate whether the fluid flow is within the linear flow regime and whether the proposed analytical solutions are applicable in the present study.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
D. Roubinet ◽  
S. Demirel ◽  
E. B. Voytek ◽  
X. Wang ◽  
J. Irving

Modeling fluid flow in three-dimensional fracture networks is required in a wide variety of applications related to fractured rocks. Numerical approaches developed for this purpose rely on either simplified representations of the physics of the considered problem using mesh-free methods at the fracture scale or complex meshing of the studied systems resulting in considerable computational costs. Here, we derive an alternative approach that does not rely on a full meshing of the fracture network yet maintains an accurate representation of the modeled physical processes. This is done by considering simplified fracture networks in which the fractures are represented as rectangles that are divided into rectangular subfractures such that the fracture intersections are defined on the borders of these subfractures. Two-dimensional analytical solutions for the Darcy-scale flow problem are utilized at the subfracture scale and coupled at the fracture-network scale through discretization nodes located on the subfracture borders. We investigate the impact of parameters related to the location and number of the discretization nodes on the results obtained, and we compare our results with those calculated using reference solutions, which are an analytical solution for simple configurations and a standard finite-element modeling approach for complex configurations. This work represents a first step towards the development of 3D hybrid analytical and numerical approaches where the impact of the surrounding matrix will be eventually considered.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Chuanyin Jiang ◽  
Xiaoguang Wang ◽  
Zhixue Sun ◽  
Qinghua Lei

We investigated the effect of in situ stresses on fluid flow in a natural fracture network. The fracture network model is based on an actual critically connected (i.e., close to the percolation threshold) fracture pattern mapped from a field outcrop. We derive stress-dependent fracture aperture fields using a hybrid finite-discrete element method. We analyze the changes of aperture distribution and fluid flow field with variations of in situ stress orientation and magnitude. Our simulations show that an isotropic stress loading tends to reduce fracture apertures and suppress fluid flow, resulting in a decrease of equivalent permeability of the fractured rock. Anisotropic stresses may cause a significant amount of sliding of fracture walls accompanied with shear-induced dilation along some preferentially oriented fractures, resulting in enhanced flow heterogeneity and channelization. When the differential stress is further elevated, fracture propagation becomes prevailing and creates some new flow paths via linking preexisting natural fractures, which attempts to increase the bulk permeability but attenuates the flow channelization. Comparing to the shear-induced dilation effect, it appears that the propagation of new cracks leads to a more prominent permeability enhancement for the natural fracture system. The results have particularly important implications for predicting the hydraulic responses of fractured rocks to in situ stress fields and may provide useful guidance for the strategy design of geofluid production from naturally fractured reservoirs.


2020 ◽  
Author(s):  
Simon Oldfield ◽  
Mikael Lüthje ◽  
Michael Welch ◽  
Florian Smit

<p>Large scale modelling of fractured reservoirs is a persistent problem in representing fluid flow in the subsurface. Considering a geothermal energy prospect beneath the Drenthe Aa area, we demonstrate application of a recently developed approach to efficiently predict fracture network geometry across an area of several square kilometres.</p><p>Using a strain based method to mechanically model fracture nucleation and propagation, we generate a discretely modelled fracture network consisting of individual failure planes, opening parallel and perpendicular to the orientation of maximum and minimum strain. Fracture orientation, length and interactions vary following expected trends, forming a connected fracture network featuring population statistics and size distributions comparable to outcrop examples.</p><p>Modelled fracture networks appear visually similar to natural fracture networks with spatial variation in fracture clustering and the dominance of major and minor fracture trends.</p><p>Using a network topology approach, we demonstrate that the predicted fracture network shares greater geometric similarity with natural networks. Considering fluid flow through the model, we demonstrate that hydraulic conductivity and flow anisotropy are strongly dependent on the geometric connection of fracture sets.</p><p>Modelling fracture evolution mechanically allows improved representation of geometric aspects of fracture networks to which fluid flow is particularly sensitive. This method enables rapid generation of discretely modelled fractures over large areas and extraction of suitable summary statistics for reservoir simulation. Visual similarity of the output models improves our ability to compare between our model and natural analogues to consider model validation.</p>


2016 ◽  
Vol 25 (3) ◽  
pp. 813-827 ◽  
Author(s):  
Ghislain Trullenque ◽  
Rishi Parashar ◽  
Clément Delcourt ◽  
Lucille Collet ◽  
Pauline Villard ◽  
...  

GeoArabia ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 27-42
Author(s):  
Stephen J. Bourne ◽  
Lex Rijkels ◽  
Ben J. Stephenson ◽  
Emanuel J.M. Willemse

ABSTRACT To optimise recovery in naturally fractured reservoirs, the field-scale distribution of fracture properties must be understood and quantified. We present a method to systematically predict the spatial distribution of natural fractures related to faulting and their effect on flow simulations. This approach yields field-scale models for the geometry and permeability of connected fracture networks. These are calibrated by geological, well test and field production data to constrain the distributions of fractures within the inter-well space. First, we calculate the stress distribution at the time of fracturing using the present-day structural reservoir geometry. This calculation is based on a geomechanical model of rock deformation that represents faults as frictionless surfaces within an isotropic homogeneous linear elastic medium. Second, the calculated stress field is used to govern the simulated growth of fracture networks. Finally, the fractures are upscaled dynamically by simulating flow through the discrete fracture network per grid block, enabling field-scale multi-phase reservoir simulation. Uncertainties associated with these predictions are considerably reduced as the model is constrained and validated by seismic, borehole, well test and production data. This approach is able to predict physically and geologically realistic fracture networks. Its successful application to outcrops and reservoirs demonstrates that there is a high degree of predictability in the properties of natural fracture networks. In cases of limited data, field-wide heterogeneity in fracture permeability can be modelled without the need for field-wide well coverage.


2020 ◽  
Vol 54 ◽  
pp. 149-156
Author(s):  
Ajay K. Sahu ◽  
Ankur Roy

Abstract. It is well known that fracture networks display self-similarity in many cases and the connectivity and flow behavior of such networks are influenced by their respective fractal dimensions. In the past, the concept of lacunarity, a parameter that quantifies spatial clustering, has been implemented by one of the authors in order to demonstrate that a set of seven nested natural fracture maps belonging to a single fractal system, but of different visual appearances, have different clustering attributes. Any scale-dependency in the clustering of fractures will also likely have significant implications for flow processes that depend on fracture connectivity. It is therefore important to address the question as to whether the fractal dimension alone serves as a reasonable proxy for the connectivity of a fractal-fracture network and hence, its flow response or, if it is the lacunarity, a measure of scale-dependent clustering, that may be used instead. The present study attempts to address this issue by exploring possible relationships between the fractal dimension, lacunarity and connectivity of fractal-fracture networks. It also endeavors to study the relationship between lacunarity and fluid flow in such fractal-fracture networks. A set of deterministic fractal-fracture models generated at different iterations and, that have the same theoretical fractal dimension are used for this purpose. The results indicate that such deterministic synthetic fractal-fracture networks with the same theoretical fractal dimension have differences in their connectivity and that the latter is fairly correlated with lacunarity. Additionally, the flow simulation results imply that lacunarity influences flow patterns in fracture networks. Therefore, it may be concluded that at least in synthetic fractal-fracture networks, rather than fractal dimension, it is the lacunarity or scale-dependent clustering attribute that controls the connectivity and hence the flow behavior.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950057 ◽  
Author(s):  
TONGJUN MIAO ◽  
SUJUN CHENG ◽  
AIMIN CHEN ◽  
YAN XU ◽  
GUANG YANG ◽  
...  

Fractures with power law length distributions abound in nature such as carbonate oil and gas reservoirs, sandstone, hot dry rocks, etc. The fluid transport properties and morphology characterization of fracture networks have fascinated numerous researchers to investigate for several decades. In this work, the analytical models for fracture density and permeability are extended from fractal fracture network to general fracture network with power law length distributions. It is found that the fracture density is related to the power law exponents [Formula: see text] and the area porosity [Formula: see text] of fracture network. Then, a permeability model for the fracture length distribution with general power law exponent [Formula: see text] and the power law exponent [Formula: see text] for fracture length versus aperture is proposed based on the well-known cubic law in individual fracture. The analytical expression for permeability of fractured networks is found to be a function of power law exponents [Formula: see text], area porosity [Formula: see text] of fracture network, and the micro-structural parameters (maximum fracture length [Formula: see text], fracture azimuth [Formula: see text] and fracture dip angle [Formula: see text]). The present model may shed light on the mechanism of seepage in fracture networks with power law length distributions.


Sign in / Sign up

Export Citation Format

Share Document