Starch-Lubricant Compositions For Improved Lubricity and Fluid Loss in Water-Based Drilling Muds

Author(s):  
Thomas R. Sifferman ◽  
Herman M. Muijs ◽  
George F. Fanta ◽  
Frederick C. Felker ◽  
Selim M. Erhan
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2655
Author(s):  
Maqsood Ahmad ◽  
Imtiaz Ali ◽  
Muhammad Syahmi Bins Safri ◽  
Mohammad Arif Izzuddin Bin Mohammad Faiz ◽  
Asif Zamir

Several borehole problems are encountered during drilling a well due to improper mud design. These problems are directly associated with the rheological and filtration properties of the fluid used during drilling. Thus, it is important to investigate the mud rheological and filtration characteristics of water-based drilling muds (WBMs). Several materials have been examined but due to the higher temperature conditions of wells, such materials have degraded and lost their primary functions. In this research, an attempt was made to prepare a water-based mud by utilizing graphene nano platelets (GNP) in addition to the native tapioca starch at different ratios. The combined effect of starch and graphene nano platelets has been investigated in terms of mud’s rheological and filtration parameters, including its plastic viscosity (PV), yield point (YP), fluid loss volume (FLV) and filtercake thickness (FCT). The morphological changes in the filtercake have also been observed using Field Emission Scanning Electron Microscope (FESEM) micrographs. Plastic viscosity was increased from 18–35 cP, 22–31 cP and 21–28 cP for 68 °F, 250 °F and 300 °F, respectively. The yield point was also enhanced from 22–37 lb/100ft2, 26–41 lb/100ft2 and 24–31 lb/100ft2 at the studied range. The fluid loss was dramatically reduced from 14.5–6.5 mL, 17.3–7.5 mL and 36–9.5 mL at 68 °F, 250 °F and 300 °F respectively. Similarly, filtercake thickness was also reduced which was further illustrated by filtercake morphology.


ACS Omega ◽  
2020 ◽  
Vol 5 (15) ◽  
pp. 8483-8495 ◽  
Author(s):  
Bahati Adnan Hamad ◽  
Miao He ◽  
Mingbiao Xu ◽  
Weihong Liu ◽  
Musa Mpelwa ◽  
...  

2014 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Samavati R. ◽  
Abdullah N. ◽  
Tahmasbi Nowtarki K. ◽  
Hussain S. A. ◽  
Awang Biak D. R.
Keyword(s):  

2018 ◽  
Vol 9 (3) ◽  
pp. 23-31 ◽  
Author(s):  
Misbah Biltayib Biltayib ◽  
Rashidi Masoud ◽  
Balhasan Saad ◽  
Alothman Reem ◽  
S. Kabuli Mufazzal

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


Author(s):  
Erfan Veisi ◽  
Mastaneh Hajipour ◽  
Ebrahim Biniaz Delijani

Cooling the drill bit is one of the major functions of drilling fluids, especially in high temperature deep drilling operations. Designing stable drilling fluids with proper thermal properties is a great challenge. Identifying appropriate additives for the drilling fluid can mitigate drill-bit erosion or deformation caused by induced thermal stress. The unique advantages of nanoparticles may enhance thermal characteristics of drilling fluids. The impacts of nanoparticles on the specific heat capacity, thermal conductivity, rheological, and filtration control characteristics of water‐based drilling fluids were experimentally investigated and compared in this study. Al2O3, CuO, and Cu nanoparticles were used to prepare the water-based drilling nanofluid samples with various concentrations, using the two-step method. Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) were utilized to study the nanoparticle samples. The nanofluids stability and particle size distribution were, furthermore, examined using Dynamic Light Scattering (DLS). The experimental results indicated that thermal and rheological characteristics are enhanced in the presence of nanoparticles. The best enhancement in drilling fluid heat capacity and thermal conductivity was obtained as 15.6% and 12%, respectively by adding 0.9 wt% Cu nanoparticles. Furthermore, significant improvement was observed in the rheological characteristics such as the apparent and plastic viscosities, yield point, and gel strength of the drilling nanofluids compared to the base drilling fluid. Addition of nanoparticles resulted in reduced fluid loss and formation damage. The permeability of filter cakes decreased with increasing the nanoparticles concentration, but no significant effect in filter cake thickness was observed. The results reveal that the application of nanoparticles may reduce drill-bit replacement costs by improving the thermal and drilling fluid rheological characteristics and decrease the formation damage due to mud filtrate invasion.


Sign in / Sign up

Export Citation Format

Share Document