scholarly journals Pilot study of expanded newborn screening for 573 genes related to severe diseases in China: results from 1173 newborns

2019 ◽  
Author(s):  
Xiaomei Luo ◽  
Yu Sun ◽  
Feng Xu ◽  
Jun Guo ◽  
Lin Li ◽  
...  

Abstract Background: Current newborn screening (NBS) in China is mainly aimed at detecting biochemical levels of metabolites in the blood, which may generate false positive/negative results. To explore whether next-generation sequencing (NGS) for dried blood spots can increase the detecting rate of genetic disorders, we carried out a pilot study using NGS in 1,173 newborns who had been tested by traditional NBS. With a focus on inherited metabolic diseases (IMDs), our team investigated the current frequencies of genes related to common inherited metabolic diseases in this cohort. Methods: We designed an NGS panel of 573 genes related to severe diseases and performed NBS in 1,173 individuals who had been screened by tandem mass spectrometry (MS/MS) as well as for phenylalanine (Phe), thyroid-stimulating hormone (TSH), 17-α-hydroxyprogesterone (17-OHP), and glucose-6-phosphate dehydrogenase (G6PD) abnormalities in a traditional biochemical NBS conducted in September 2016. We compared the biochemical results to the genetic variants and investigated the carrier frequencies of 77 genes related to disorders by MS/MS in these newborns.Results: The biochemical results showed that four newborns (all male) were positive for G6PD by enzymatic assay, while the other biochemical findings including MS/MS, Phe, TSH and 17-OHP were negative. Genetic analysis results revealed that all the four newborns with positive G6PD values harbored hemizygous G6PD mutations. The NGS results also revealed an individual (ID 84123) carrying two SLC22A5 mutations (c.760C>T/p.R254* and c.1400C>G/p.S467C) common in Chinese patients with carnitine deficiency, which were later verified to be in trans, who was biochemically negative in 2016. The MS/MS results in 2019 showed free carnitine deficiency, consistent with the genetic analysis findings. The top five genes with the highest carrier frequencies in these newborns were PAH (1.77%), ETFDH (1.24%), MMACHC (1.15%), SLC25A13 (0.98%), and GCDH (0.80%). Conclusions: Our study provided data combing biochemical results with genetic variants in 1,173 newborns and confirmed a primary carnitine deficiency patient with false-negative biochemical results. This is also the first study to report the carrier frequencies of 77 IMD-causing genes in China.

2019 ◽  
Author(s):  
Xiaomei Luo ◽  
Yu Sun ◽  
Feng Xu ◽  
Jun Guo ◽  
Lin Li ◽  
...  

Abstract Background: Current newborn screening (NBS) in China is mainly aimed at detecting biochemical levels of metabolites in the blood, which may generate false positive/negative results. To explore whether next-generation sequencing (NGS) for dried blood spots can increase the detecting rate, we carried out a pilot study using NGS in 1,173 newborns who had been tested by traditional NBS. With a focus on inherited metabolic diseases (IMDs), our team investigated the current frequencies of genes related to common inherited metabolic diseases in this cohort. Methods: We designed an NGS panel of 573 genes related to severe diseases and performed NBS in 1,173 individuals who had been screened by tandem mass spectrometry (MS/MS) as well as for phenylalanine (Phe), thyroid-stimulating hormone (TSH), 17-α-hydroxyprogesterone (17-OHP), and glucose-6-phosphate dehydrogenase (G6PD) abnormalities in a traditional biochemical NBS conducted in September 2016. We compared the biochemical results to the genetic variants and investigated the carrier frequencies of 77 genes related to disorders by MS/MS in these newborns.Results: The biochemical results showed that four newborns (all male) were positive for G6PD by enzymatic assay, while the other biochemical findings including MS/MS, Phe, TSH and 17-OHP were negative. Genetic analysis results revealed that all the four newborns with positive G6PD values harbored hemizygous G6PD mutations. The NGS results also revealed an individual (ID 84123) carrying two SLC22A5 mutations (c.760C>T/p.R254* and c.1400C>G/p.S467C) common in Chinese patients with carnitine deficiency, which were later verified to be in trans, who was biochemically negative in 2016. The MS/MS results in 2019 showed free carnitine deficiency, consistent with the genetic analysis findings. The top five genes with the highest carrier frequencies in these newborns were PAH (1.77%), ETFDH (1.24%), MMACHC (1.15%), SLC25A13 (0.98%), and GCDH (0.80%). Conclusions: Our study provided data combing biochemical results with genetic variants in 1,173 newborns and confirmed a primary carnitine deficiency patient with false-negative biochemical results. This is also the first study to report the carrier frequencies of 77 IMD-causing genes in China.


2019 ◽  
Author(s):  
Xiaomei Luo ◽  
Yu Sun ◽  
Feng Xu ◽  
Jun Guo ◽  
Lin Li ◽  
...  

Abstract Background: Current newborn screening (NBS) in China is mainly aimed at detecting biochemical levels of metabolites in blood, which may generate false positive/negative results. Methods: We designed a next-generation sequencing (NGS) panel of 573 genes related to severe diseases and performed NBS for 1173 individuals, who had been screened for tandem mass spectrometry (MS/MS), phenylalanine (Phe), thyroid-stimulating hormone (TSH), 17-α-hydroxyprogesterone (17-OHP) and glucose-6-phosphate dehydrogenase (G6PD) as conducted in traditional biochemical NBS in September 2016. We compared their biochemical results with genetic variants and investigated the carrier frequencies of 77 genes related to disorders of MS/MS in these newborns. Results: Biochemical results showed that four newborns were positive for G6PD enzymatic assay (all males), the other biochemical values including MS/MS, Phe, TSH and 17-OHP were negative. Genetic analysis results showed that all the four newborns with positive G6PD values carried G6PD hemizygous mutations. Besides, NGS results revealed an individual (ID 84123) carrying two common SLC22A5 mutations (c.760C>T/p.R254* and c.1400C>G/p.S467C) in Chinese population which were verified in trans later, was biochemical negative in 2016. MS/MS results in June 2019 showed free carnitine deficiency, which was consistence with genetic analysis results. Carrier frequencies data suggested the top five genes with the highest carrier frequencies in these newborns were PAH (2.04%), ETFDH (1.24%), MMACHC (1.15%), SLC25A13 (0.98%), and GCDH (0.80%). Conclusion: Our study provides data that combine biochemical results with genetic variants in 1173 newborns. This is the first study that reveals carrier frequencies of 77 genes causing inherited metabolic diseases (IMDs) in China.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziga I. Remec ◽  
Urh Groselj ◽  
Ana Drole Torkar ◽  
Mojca Zerjav Tansek ◽  
Vanja Cuk ◽  
...  

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disorder of fatty acid metabolism with a variable presentation. The aim of this study was to describe five patients with VLCADD diagnosed through the pilot study and expanded newborn screening (NBS) program that started in 2018 in Slovenia. Four patients were diagnosed through the expanded NBS program with tandem mass spectrometry; one patient was previously diagnosed in a pilot study preceding the NBS implementation. Confirmatory testing consisted of acylcarnitines analysis in dried blood spots, organic acids profiling in urine, genetic analysis of ACADVL gene, and enzyme activity determination in lymphocytes or fibroblasts. Four newborns with specific elevation of acylcarnitines diagnostic for VLCADD and disease-specific acylcarnitines ratios (C14:1, C14, C14:2, C14:1/C2, C14:1/C16) were confirmed with genetic testing: all were compound heterozygotes, two of them had one previously unreported ACDVL gene variant each (NM_000018.3) c.1538C > G; (NP_000009) p.(Ala513Gly) and c.661A > G; p.(Ser221Gly), respectively. In addition, one patient diagnosed in the pilot study also had a specific elevation of acylcarnitines. Subsequent ACDVL genetic analysis confirmed compound heterozygosity. In agreement with the diagnosis, enzyme activity was reduced in five patients tested. In seven other newborns with positive screening results, only single allele variants were found in the ACDVL gene, so the diagnosis was not confirmed. Among these, two variants were novel, c.416T > C and c.1046C > A, respectively (p.Leu139Pro and p.Ala349Glu). In the first 2 years of the expanded NBS program in Slovenia altogether 30,000 newborns were screened. We diagnosed four cases of VLCADD. The estimated VLCADD incidence was 1:7,500 which was much higher than that of the medium-chain acyl-CoA dehydrogenase deficiency (MCADD) cases in the same period. Our study also provided one of the first descriptions of ACADVL variants in Central-Southeastern Europe and reported on 4 novel variants.


Author(s):  
Yiming Lin ◽  
Weifeng Zhang ◽  
Zhixu Chen ◽  
Chunmei Lin ◽  
Weihua Lin ◽  
...  

Abstract Objectives Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid and choline metabolism. Late-onset MADD is caused by ETFDH mutations and is the most common lipid storage myopathy in China. However, few patients with MADD have been identified through newborn screening (NBS). This study assessed the acylcarnitine profiles and molecular features of patients with MADD identified through NBS. Methods From January 2014 to June 2020, 479,786 newborns screened via tandem mass spectrometry were recruited for this study. Newborns with elevated levels of multiple acylcarnitines were recalled, those who tested positive in the reassessment were referred for genetic analysis. Results Of 479,786 newborns screened, six were diagnosed with MADD. The MADD incidence in the Chinese population was estimated to be 1:79,964. Initial NBS revealed five patients with typical elevations in the levels of multiple acylcarnitines; however, in one patient, acylcarnitine levels were in the normal reference range during recall. Notably, one patient only exhibited a mildly increased isovalerylcarnitine (C5) level at NBS. The patient with an atypical acylcarnitine profile was diagnosed with MADD by targeted gene sequencing. Six distinct ETFDH missense variants were identified, with the most common variant being c.250G>A (p.A84T), with an allelic frequency of 58.35 (7/12). Conclusions These findings revealed that it is easy for patients with MADD to go unidentified, as they may have atypical acylcarnitine profiles at NBS and the recall stage, indicating the value of genetic analysis for confirming suspected inherited metabolic disorders in the NBS program. Therefore, false-negative (FN) results may be reduced by combining tandem mass spectrometry (MS/MS) with genetic testing in NBS for MADD.


2009 ◽  
Vol 55 (12) ◽  
pp. 2207-2213 ◽  
Author(s):  
Barbara W Adam ◽  
Timothy H Lim ◽  
Elizabeth M Hall ◽  
W Harry Hannon

Abstract Background: Succinylacetone (SUAC) is the primary metabolite accumulated in tyrosinemia type I—an inborn error of metabolism that, if untreated, can cause death from liver failure during the first months of life. Newborn screening laboratories measure SUAC in dried blood spot (DBS) samples to detect asymptomatic tyrosinemia type I. We used panels of SUAC-enriched DBSs to compare and evaluate the performance of these screening tests. Methods: We prepared sets of DBS materials enriched with predetermined SUAC concentrations and distributed samples of these materials, along with a screening practices questionnaire, to laboratories that perform SUAC tests. We compared their reported SUAC concentrations and questionnaire responses to identify screening practices that affect SUAC test outcomes. Results: Data from 2 pilot surveys showed large differences among laboratories in SUAC recoveries, reproducible within-laboratory recoveries, and stable performance of the DBS materials. Results from 257 proficiency test analyses contained a total of 6 false-negative misclassifications. Reported recoveries of added SUAC ranged from 0 to >200%. Low-biased SUAC recoveries were associated with 1 method used by 5 laboratories. All laboratories that reported SUAC recoveries ≥100% used DBS matrix calibrators. Conclusions: The wide ranges of SUAC concentrations reported for pilot and proficiency testing specimens demonstrate a need to harmonize quantitative results among laboratories. Although DBS matrix calibrators are important for optimizing SUAC recoveries, the preparation of these calibrators is not standardized among laboratories. Certified DBS-based SUAC calibrators are needed for accuracy and harmonization.


2014 ◽  
Vol 111 (2) ◽  
pp. S79
Author(s):  
Ken Momosaki ◽  
Shirou Matsumoto ◽  
Kimitoshi Nakamura ◽  
Hiroshi Mitsubuchi ◽  
Toshika Okumiya ◽  
...  

2008 ◽  
Vol 54 (4) ◽  
pp. 657-664 ◽  
Author(s):  
Coleman Turgeon ◽  
Mark J Magera ◽  
Pierre Allard ◽  
Silvia Tortorelli ◽  
Dimitar Gavrilov ◽  
...  

Abstract Background: Tyrosinemia type I (TYR 1) is a disorder causing early death if left untreated. Newborn screening (NBS) for this condition is problematic because determination of the diagnostic marker, succinylacetone (SUAC), requires a separate first-tier or only partially effective second-tier analysis based on tyrosine concentration. To overcome these problems, we developed a new assay that simultaneously determines acylcarnitines (AC), amino acids (AA), and SUAC in dried blood spots (DBS) by flow injection tandem mass spectrometry (MS/MS). Methods: We extracted 3/16-inch DBS punches with 300 μL methanol containing AA and AC stable isotope-labeled internal standards. This extract was derivatized with butanol-HCl. In parallel, we extracted SUAC from the residual filter paper with 100 μL of a 15 mmol/L hydrazine solution containing the internal standard 13C5-SUAC. We combined the derivatized aliquots in acetonitrile for MS/MS analysis of AC and AA with additional SRM experiments for SUAC (m/z 155–137) and 13C5-SUAC (m/z 160–142). Analysis time was 1.2 min. Results: SUAC was increased in retrospectively analyzed NBS samples of 11 TYR 1 patients (length of storage, 52 months to 1 week; SUAC range, 13–81 μmol/L), with Tyr concentrations ranging from 65 to 293 μmol/L in the original NBS analysis. The mean concentration of SUAC in 13 521 control DBS was 1.25 μmol/L. Conclusion: The inclusion of SUAC analysis into routine analysis of AC and AA allows for rapid and cost-effective screening for TYR 1 with no tangible risk of false-negative results.


2020 ◽  
Author(s):  
Sarah Catharina Grünert ◽  
Sara Tucci ◽  
Anke Schumann ◽  
Meike Schwendt ◽  
Gwendolyn Gramer ◽  
...  

Abstract Background Primary carnitine deficiency due to mutations in the OCTN2 gene is a rare but well-treatable metabolic disorder that puts patients at risk for metabolic decompensations, skeletal and cardiac myopathy and sudden cardiac death. Results We report on a 7-year-old boy diagnosed with primary carnitine deficiency 2 years after successful heart transplantation thanks his younger sister’s having been identified via expanded newborn screening during a pilot study evaluating an extension of the German newborn screening panel. Conclusion As L-carnitine supplementation can prevent and mostly reverse clinical symptoms of primary carnitine deficiency, all patients with cardiomyopathy should be investigated for primary carnitine deficiency even if newborn screening results were unremarkable.


Sign in / Sign up

Export Citation Format

Share Document