Genomic Variation between PRSV Resistant Transgenic SunUp and Its Progenitor Cultivar Sunset Induced by Particle Bombardment Transformation

2019 ◽  
Author(s):  
Jingping Fang ◽  
Andrew Wood ◽  
Youqiang Chen ◽  
Jingjing Yue ◽  
Ray Ming

Abstract The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. In this study, a total of more than 74 million Illumina reads for progenitor ‘Sunset’ were mapped onto transgenic papaya ‘SunUp’ reference genome. 310,364 single nucleotide polymorphisms (SNPs), 34,071 Small Inserts/deletions (InDels) and 1,200 large structural variations (SVs) were detected between ‘Sunset’ and ‘SunUp’. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4×10 -4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. Spontaneous mutations were the leading cause of SNPs in transgenic papaya ‘SunUp’. A total of 3,430 nuclear plastid DNA (NUPT) and 2,764 nuclear mitochondrial DNA (NUMT) junction sites have been found in ‘SunUp’, which is proportionally higher than the predicted total NUPT and NUMT junction sites in ‘Sunset’ (3,346 and 2,745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by ‘SunUp’ and ‘Sunset’. The average identity between ‘SunUp’ specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by ‘SunUp’ and ‘Sunset’. Six ‘SunUp’ organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18~100%). None of the paired-end spans of mapped ‘Sunset’ reads were elongated by any ‘SunUp’ transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions. Comparative whole-genome analyses between ‘SunUp’ and ‘Sunset’ provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.

2020 ◽  
Author(s):  
Jingping Fang ◽  
Andrew Wood ◽  
Youqiang Chen ◽  
Jingjing Yue ◽  
Ray Ming

Abstract Background: The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. Results: In this study, a total of more than 74 million Illumina reads for progenitor ‘Sunset’ were mapped onto transgenic papaya ‘SunUp’ reference genome. 310,364 single nucleotide polymorphisms (SNPs), 34,071 small Inserts/deletions (InDels) and 1,200 large structural variations (SVs) were detected between ‘Sunset’ and ‘SunUp’. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4×10-4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. Spontaneous mutations were the leading cause of SNPs in transgenic papaya ‘SunUp’. A total of 3,430 nuclear plastid DNA (NUPT) and 2,764 nuclear mitochondrial DNA (NUMT) junction sites have been found in ‘SunUp’, which is proportionally higher than the predicted total NUPT and NUMT junction sites in ‘Sunset’ (3,346 and 2,745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by ‘SunUp’ and ‘Sunset’. The average identity between ‘SunUp’ specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by ‘SunUp’ and ‘Sunset’. Six ‘SunUp’ organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18~100%). None of the paired-end spans of mapped ‘Sunset’ reads were elongated by any ‘SunUp’ transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions.Conclusions: Comparative whole-genome analyses between ‘SunUp’ and ‘Sunset’ provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.


2021 ◽  
Vol 7 (3) ◽  
pp. 47
Author(s):  
Marios Lange ◽  
Rodiola Begolli ◽  
Antonis Giakountis

The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cooper J. Park ◽  
Nicole A. Caimi ◽  
Debbie C. Buecher ◽  
Ernest W. Valdez ◽  
Diana E. Northup ◽  
...  

Abstract Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces. Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces.


2021 ◽  
Author(s):  
Charles Christian Riis Hansen ◽  
Kristen M. Westfall ◽  
Snaebjörn Pálsson

Abstract BackgroundWhole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to a reference genome of a related species (chicken) with identified sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. ResultsThe best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). The read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. The SNP-loading scores (method iv) found 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. The heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of likely PAR and gametologous regions.ConclusionIdentification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining read depth differences between sexes.


2015 ◽  
Author(s):  
Rob W Ness ◽  
Susanne A Kraemer ◽  
Nick Colegrave ◽  
Peter D Keightley

Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input ofde novomutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation inChlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic dataset of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies inC. reinhardtiiand demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome.


Zootaxa ◽  
2020 ◽  
Vol 4858 (2) ◽  
pp. 201-230
Author(s):  
MICHAEL MAHONY ◽  
BEDE MOSES ◽  
STEPHEN V. MAHONY ◽  
FRANK L. LEMCKERT ◽  
STEPHEN DONNELLAN

Population declines and range contractions among Australian frogs that commenced in the early 1980s continue in some species that were once widespread. The generality of this pattern has been difficult to discern, especially for those species that are encountered rarely because they have restricted periods of calling activity with poorly defined habitat preferences, and are not common. Several lines of evidence indicate that Litoria littlejohni is such a species. This frog was once known from mid-eastern New South Wales to eastern Victoria, and evidence from wildlife atlas databases and targeted searches indicate that it has declined in large portions of its former range, leaving several populations that are isolated, in some cases restricted in distribution, and of small size. We investigated the relationships among populations using mitochondrial ND4 nucleotide sequences and single nucleotide polymorphisms (SNPs) from the nuclear genome. We found that northern and southern populations form two highly divergent genetic groups whose distributions abut at the southern margin of the Sydney Basin Bioregion and these genetic groups also show divergence in morphology and male advertisement calls. Here we describe the populations to the south of the Sydney Basin Bioregion as a new species and provide information on its distribution and ecology. In light of the apparent isolation and small size of known populations of the new species and the consequent restriction of the range of L. littlejohni, we assessed the conservation status of both species. 


2019 ◽  
Vol 133 (3) ◽  
pp. 951-966 ◽  
Author(s):  
Maria Kyriakidou ◽  
Sai Reddy Achakkagari ◽  
José Héctor Gálvez López ◽  
Xinyi Zhu ◽  
Chen Yu Tang ◽  
...  

Abstract Key message Twelve potato accessions were selected to represent two principal views on potato taxonomy. The genomes were sequenced and analyzed for structural variation (copy number variation) against three published potato genomes. Abstract The common potato (Solanum tuberosum L.) is an important staple crop with a highly heterozygous and complex tetraploid genome. The other taxa of cultivated potato contain varying ploidy levels (2X–5X), and structural variations are common in the genomes of these species, likely contributing to the diversification or agronomic traits during domestication. Increased understanding of the genomes and genomic variation will aid in the exploration of novel agronomic traits. Thus, sequencing data from twelve potato landraces, representing the four ploidy levels, were used to identify structural genomic variation compared to the two currently available reference genomes, a double monoploid potato genome and a diploid inbred clone of S. chacoense. The results of a copy number variation analysis showed that in the majority of the genomes, while the number of deletions is greater than the number of duplications, the number of duplicated genes is greater than the number of deleted ones. Specific regions in the twelve potato genomes have a high density of CNV events. Further, the auxin-induced SAUR genes (involved in abiotic stress), disease resistance genes and the 2-oxoglutarate/Fe(II)-dependent oxygenase superfamily proteins, among others, had increased copy numbers in these sequenced genomes relative to the references.


2020 ◽  
Vol 21 (7) ◽  
pp. 2385
Author(s):  
Chao Bian ◽  
Weiting Chen ◽  
Zhiqiang Ruan ◽  
Zhe Hu ◽  
Yu Huang ◽  
...  

casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals.


2020 ◽  
Vol 117 (40) ◽  
pp. 25159-25168 ◽  
Author(s):  
Frederik Van den Broeck ◽  
Nicholas J. Savill ◽  
Hideo Imamura ◽  
Mandy Sanders ◽  
Ilse Maes ◽  
...  

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host–parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles—but not maxicircles—show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Author(s):  
Mehmet Göktay ◽  
Andrea Fulgione ◽  
Angela M Hancock

Abstract Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a “core” genome underlying basic cellular processes and a “flexible” genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.


Sign in / Sign up

Export Citation Format

Share Document