scholarly journals Small intestinal microbiota composition and the prognosis of infants with ileostomy resulting from distinct primary diseases

2020 ◽  
Author(s):  
Tian Qian ◽  
Haitao Zhu ◽  
Li Zhu ◽  
Chao Chen ◽  
Chun Shen ◽  
...  

Abstract Background: Studies of microbiota composition of infants with small intestinal ostomy due to various etiologies are limited. Here, we characterized the intestinal microbiota of neonates with ileostomy resulting from distinct primary diseases. Methods: Fifteen patients with necrotizing enterocolitis, eight patients with meconium peritonitis, and seven patients with Hirschsprung's disease were included in the study. The small intestinal microbiota composition in infants with ileostomy caused by these diseases was studied. Results: Microbial diversity in neonatal ileostomy fluid was generally low, and was dominated by members of the Proteobacteria and Firmicutes phyla. At the genus level, the most abundant were Klebsiella, Escherichia-Shigella, Streptococcus, Clostridium sensu stricto 1, Enterococcus, and Lactobacillus. Streptococcus and Veillonella are related to carbohydrate metabolism and immunity, and breastfeeding can increase the proportion of these potentially beneficial bacteria. The proportion of Bifidobacterium in the breastfeeding group was higher than that in the non-breastfeeding group, and incidence of colitis and sepsis was reduced in the breastfeeding group. The proportion of Bifidobacterium increased and incidence of colitis and sepsis decreased in the breastfeeding group compared with the non- breastfeeding group, but there was no significant difference. The increase in body weight in the breastfeeding group was observed to be higher than in the non-breastfeeding group. Conclusions: Excessive Klebsiella and Escherichia-Shigella and low abundance of Streptococcus, Veillonella and Faecalibacterium suggests that the small intestinal microbiota is in an unhealthy state after ileostomy. However, Streptococcus, Faecalibacterium, and Veillonella species were frequently present, suggesting that expansion of these bacteria might assist the development of the immune system after surgery.

2020 ◽  
Author(s):  
Tian Qian ◽  
Haitao Zhu ◽  
Li Zhu ◽  
Chao Chen ◽  
Chun Shen ◽  
...  

Abstract Background: Studies of microbiota composition of infants with small intestinal ostomy due to various etiologies are limited. Here, we characterized the intestinal microbiota of infants with ileostomy resulting from distinct primary diseases. Methods: Fifteen patients with necrotizing enterocolitis, eight patients with meconium peritonitis, and seven patients with Hirschsprung's disease were included in the study. The small intestinal microbiota composition in infants with ileostomy caused by these diseases was studied. Results: Microbial diversity in infantile ileostomy fluid was generally low, and was dominated by members of the Proteobacteria and Firmicutes phyla. At the genus level, the most abundant were Klebsiella, Escherichia-Shigella, Streptococcus, Clostridium sensu stricto 1, Enterococcus, and Lactobacillus. Streptococcus and Veillonella are related to carbohydrate metabolism and immunity, and breastfeeding can increase the proportion of these potentially beneficial bacteria. The proportion of Bifidobacterium in the breastfeeding group was higher than that in the non-breastfeeding group, and incidence of colitis and sepsis was significantly reduced in the breastfeeding group. The increase in body weight in the breastfeeding group was observed to be higher than in the non-breastfeeding group. Conclusions: Excessive Klebsiella and Escherichia-Shigella and low abundance of Streptococcus, Veillonella and Faecalibacterium suggests that the small intestinal microbiota is in an unhealthy state after ileostomy. However, Streptococcus, Faecalibacterium, and Veillonella species were frequently present, suggesting that expansion of these bacteria might assist the development of the immune system after surgery.


2019 ◽  
Author(s):  
Tian Qian ◽  
Haitao Zhu ◽  
Li Zhu ◽  
Chao Chen ◽  
Chun Shen ◽  
...  

Abstract Background: Studies on microbiota characteristics of infants with small intestinal ostomy due to various etiologies are limited. Here, we investigated the intestinal microbiota of neonates with ileostomy due to different primary diseases. Methods: Fifteen patients with necrotizing enterocolitis, eight patients with meconium peritonitis, and seven patients with Hirschsprung's disease were included in the study. The small intestinal microbiota composition in infants with ileostomy caused by different disease was investigated. Results: The microbial diversity in neonatal ileostomy fluid was generally low, dominated by Proteobacteria and Firmicutes members. At the genus levels, the most abundant bacteria were Klebsiella, Escherichia-Shigella, Streptococcus, Clostridium sensu stricto 1, Enterococcus, and Lactobacillus. Streptococcus and Veillonella were related to carbohydrate metabolism and immunity, and breastfeeding could increase the proportion of these beneficial bacteria. The proportion of Bifidobacterium in the breastfeeding group was higher than that in the non-breastfeeding group, and the incidence of colitis and sepsis was significantly reduced in the breastfeeding group. The increase of body weight in the breastfeeding group was also higher than that in the non-breastfeeding group. Conclusions: Excessive Klebsiella and Escherichia-Shigella and low abundance of Streptococcus, Veillonella, and Faecalibacterium indicated that the small intestinal microbiota was still in an unhealthy state. However, Streptococcus, Faecalibacterium, and Veillonella were commonly found, suggesting that these bacteria might promote the development of immune system after surgeries.


2020 ◽  
Author(s):  
Tian Qian ◽  
Haitao Zhu ◽  
Li Zhu ◽  
Chao Chen ◽  
Chun Shen ◽  
...  

Abstract Background: Studies of microbiota composition of infants with small intestinal ostomy due to various etiologies are limited. Here, we characterized the intestinal microbiota of neonates with ileostomy resulting from distinct primary diseases. Methods: Fifteen patients with necrotizing enterocolitis, eight patients with meconium peritonitis, and seven patients with Hirschsprung's disease were included in the study. The small intestinal microbiota composition in infants with ileostomy caused by these diseases was studied. Results: Microbial diversity in neonatal ileostomy fluid was generally low, and was dominated by members of the Proteobacteria and Firmicutes phyla. At the genus level, the most abundant were Klebsiella, Escherichia-Shigella, Streptococcus, Clostridium sensu stricto 1, Enterococcus, and Lactobacillus. Streptococcus and Veillonella are related to carbohydrate metabolism and immunity, and breastfeeding can increase the proportion of these potentially beneficial bacteria. The proportion of Bifidobacterium in the breastfeeding group was higher than that in the non-breastfeeding group, and incidence of colitis and sepsis was reduced in the breastfeeding group. The increase in body weight in the breastfeeding group was observed to be higher than in the non-breastfeeding group. Conclusions: Excessive Klebsiella and Escherichia-Shigella and low abundance of Streptococcus, Veillonella and Faecalibacterium suggests that the small intestinal microbiota is in an unhealthy state after ileostomy. However, Streptococcus, Faecalibacterium, and Veillonella species were frequently present, suggesting that expansion of these bacteria might assist the development of the immune system after surgery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ling Zhang ◽  
Linkang Wang ◽  
Yimin Dai ◽  
Tianyu Tao ◽  
Jingqi Wang ◽  
...  

Endometritis is the main cause of decreased reproductive performance of sows, while one of the most important factors in the etiology of sow endometritis is an aberration of birth canal microbiota. Therefore, people began to pay attention to the microbiota structure and composition of the birth canal of sows with endometritis. Interestingly, we found that the risk of endometritis was increased in the sows with constipation in clinical practice, which may imply that the intestinal flora is related to the occurrence of endometritis. Therefore, understanding the relationship between birth canal microbiota and intestinal microbiota of the host has become exceptionally crucial. In this study, the microbiota of birth canal secretions and fresh feces of four healthy and four endometritis sows were analyzed via sequencing the V3 + V4 region of bacterial 16S ribosomal (rDNA) gene. The results showed a significant difference between endometritis and healthy sows birth canal flora in composition and abundance. Firmicutes (74.36%) and Proteobacteria were the most dominant phyla in birth canal microbiota of healthy sows. However, the majority of beneficial bacteria that belonging to Firmicutes phylum (e.g., Lactobacillus and Enterococcus) declined in endometritis sow. The abundance of Porphyromonas, Clostridium sensu stricto 1, Streptococcus, Fusobacterium, Actinobacillus, and Bacteroides increased significantly in the birth canal microbiota of endometritis sows. Escherichia–Shigella and Bacteroides were the common genera in the birth canal and intestinal flora of endometritis sows. The abundance of Escherichia–Shigella and Bacteroides in the intestines of sows suffering from endometritis were significantly increased than the intestinal microbiota of the healthy sows. We speculated that some intestinal bacteria (such as Escherichia–Shigella and Bacteroides) might be bound up with the onset of sow endometritis based on intestinal microbiota analysis in sows with endometritis and healthy sows. The above results can supply a theoretical basis to research the pathogenesis of endometritis and help others understand the relationship with the microbiota of sow's birth canal and gut.


2008 ◽  
Vol 21 (4) ◽  
pp. 891-901 ◽  
Author(s):  
M.J. Fernandez-Cabezudo ◽  
S. Azimullah ◽  
S.M. Nurulain ◽  
M. Mechkarska ◽  
D.E. Lorke ◽  
...  

Paraoxon is the bioactive metabolite of the organophosphate pesticide parathion. Desulphuration of parathion by liver enzymes or sunlight results in the formation of paraoxon which inhibits acetylcholine esterase (AChE) activity. In the present study, we analyzed the effect of a 6-week, subchronic treatment with two different daily intraperitoneal doses (30 or 40 nmol) of paraoxon on the immune system of BALB/c mice. At a dose of 30 nmol/day, body weight of treated animals was unchanged compared to the controls. In contrast, the higher dose (40 nmol/day) induced a reduction in body growth, particularly in the first 3 weeks of treatment, peaking at week 2 when the saline group showed a 14.2-fold increase in body weight gain compared to paraoxon-treated animals. Moreover, mice treated with either dose of paraoxon had a >50% reduction in AChE activity during the first 3 weeks of treatment, but by the end of the treatment (week 6), AChE activity returned to normal. With regard to immunological parameters, there was no significant difference in either total spleen weight or in the ratios of various spleen cell populations between control and paraoxon-treated animals. Furthermore, no changes were observed in mitogen-induced cytokine secretion from splenocytes of paraoxon-treated mice. Finally, subchronic exposure to paraoxon did not alter mortality of mice exposed to a bacterial infection with Salmonella typhimurium. These data suggest that although subchronic exposure to paraoxon induced a transient inhibition in AChE activity, it had no demonstrable effect on the host immune system.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tian Qian ◽  
Haitao Zhu ◽  
Li Zhu ◽  
Chao Chen ◽  
Chun Shen ◽  
...  

2021 ◽  
Vol 19 (3) ◽  
pp. 58-68
Author(s):  
A.I. Khavkin ◽  
◽  
T.A. Kovtun ◽  
D.V. Makarkin ◽  
O.B. Fedotova ◽  
...  

One of the main strategies for preventing chronic diseases is a balanced diet from early childhood, with the inclusion of functional ingredients: dietary fiber, vitamins and vitamin-like compounds, minerals, polyunsaturated fatty acids, prebiotics and probiotics. A combined enrichment of fermented dairy products with prebiotics and probiotics contributes to the summation of their positive effective influence. Adding prebiotics and probiotics to the diet leads to the change in the intestinal microbiota composition towards a more balanced structure, thereby increasing the intestinal barrier function and the formation of optimal immune interactions. The most commonly used in human nutrition is a combination of bifidobacteria or lactobacilli with fructo-oligosaccharides in synbiotic products. It is important that the microorganisms are safe, stable in storage and able to survive in the gastrointestinal tract. The use of probiotic fermented dairy products has a positive impact on child health: it has anti-infectious and immunomodulatory effects, helps to normalize the gastrointestinal motility. These statements are confirmed by controlled studies in which children aged 8 to 18 months, recovering from acute respiratory disease, for which antibiotic therapy was prescribed, included in the diet drinking yoghurts enriched with Bifidobacterium lactis BB12 and inulin for 3 months. The inclusion of yoghurts in the children’s diet helped to normalize the intestinal microbiota composition after antibiotic therapy, as well as to strengthen the immune system by stimulating the synthesis of protective factors – secretory immunoglobulin A and lysozyme. Key words: fermented dairy products, child nutrition, probiotics, prebiotics, synbiotics, inulin, microbiota, functional foods, immune system, Bifidobacterium lactis BB12


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Caroline Marcantonio Ferreira ◽  
Angélica Thomaz Vieira ◽  
Marco Aurelio Ramirez Vinolo ◽  
Fernando A. Oliveira ◽  
Rui Curi ◽  
...  

The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.


2014 ◽  
Vol 80 (8) ◽  
pp. 2546-2554 ◽  
Author(s):  
Zongxin Ling ◽  
Zailing Li ◽  
Xia Liu ◽  
Yiwen Cheng ◽  
Yueqiu Luo ◽  
...  

ABSTRACTIncreasing evidence suggests that perturbations in the intestinal microbiota composition of infants are implicated in the pathogenesis of food allergy (FA), while the actual structure and composition of the intestinal microbiota in human beings with FA remain unclear. Microbial diversity and composition were analyzed with parallel barcoded 454 pyrosequencing targeting the 16S rRNA gene hypervariable V1-V3 regions in the feces of 34 infants with FA (17 IgE mediated and 17 non-IgE mediated) and 45 healthy controls. Here, we showed that several key FA-associated bacterial phylotypes, but not the overall microbiota diversity, significantly changed in infancy fecal microbiota with FA and were associated with the development of FA. The proportion of abundantBacteroidetes,Proteobacteria, andActinobacteriaphyla were significantly reduced, while theFirmicutesphylum was highly enriched in the FA group (P< 0.05). AbundantClostridiaceae1 organisms were prevalent in infants with FA at the family level (P= 0.016). FA-enriched phylotypes negatively correlated with interleukin-10, for example, the generaEnterococcusandStaphylococcus. Despite profound interindividual variability, levels of 20 predominant genera were significantly different between the FA and healthy control groups (P< 0.05). Infants with IgE-mediated FA had increased levels ofClostridium sensu strictoandAnaerobacterand decreased levels ofBacteroidesandClostridiumXVIII (P< 0.05). A positive correlation was observed betweenClostridium sensu strictoand serum-specific IgE (R= 0.655,P< 0.001). The specific microbiota signature could distinguish infants with IgE-mediated FA from non-IgE-mediated ones. Detailed microbiota analysis of a well-characterized cohort of infants with FA showed that dysbiosis of fecal microbiota with several FA-associated key phylotypes may play a pathogenic role in FA.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tzu-Wen Cross ◽  
Evan Hutchison ◽  
Jacob Coulthurst ◽  
Federico Rey

Abstract Objectives Dietary fiber consumption improves cardiometabolic health, partly by enhancing microbial diversity and increasing production of butyrate in the distal gut. However, it is unclear whether the benefits associated with different types of fiber vary based on the gut microbiota composition. We surveyed nine different human gut microbial communities by characterizing them in germ-free mice and selected two communities based on their butyrate-producing capacity (“B”) and diversity (“D”) (i.e., high- vs. low-BD communities). Our objective was to assess the role of high- vs. low-BD communities on the metabolic effects elicited by the consumption of various dietary fibers. Methods We formulated seven diets with different sources of dietary fiber (10% wt/wt): i) resistant starch type 2 (RS2); ii) RS4; iii) inulin; iv) short-chain fructooligosaccharides (scFOS); v) pectin, vi) assorted fiber (a combination of the 5 fermentable fibers), and vii) cellulose (a non-fermentable control). Germ-free C57BL/6 male mice were colonized with either the high- or low-BD communities and fed the assorted fiber diet for 2 weeks to reach stability of microbial engraftment. Mice were then switched to one of the 7 diets for 4 weeks (n = 7–10/group; 117 mice total). We quantified cecal level of short-chain fatty acids and assessed the gut microbiota composition using 16S rRNA gene-based sequencing. Results Mice colonized with the high-BD community have lower body weight and fat mass compared to the low-BD community when fermentable-fiber sources RS2, inulin, or assorted fiber were present in the diet. Body weight did not differ between the two communities when mice were fed RS4, scFOS, pectin, or cellulose diets. Lower body weight and fat mass were associated with greater cecal butyrate concentrations and microbial diversity. Conclusions The efficacy of dietary fiber interventions on metabolic health varies based on the gut microbiota composition. Overall, our results suggest that dietary fiber supplementations need to be matched with the metabolic potential of the gut microbiome. Funding Sources Fondation Leducq, USDA, and NIH.


Sign in / Sign up

Export Citation Format

Share Document