scholarly journals Transcriptome analysis reveals ethylene-mediated defense responses to Fusarium oxysporum f. sp. cucumerinum infection in Cucumis sativus

2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but the molecular mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To gain an improved understanding of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 h after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 h and other time points after inoculation. All ethylene-related and pathogenesis-related genes from among the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, these genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.

2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understanding of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2020 ◽  
Author(s):  
Guillermo Reboledo ◽  
Astrid Agorio ◽  
Lucía Vignale ◽  
Ramón Alberto Batista-García ◽  
Inés Ponce De León

AbstractBryophytes were among the first plants that colonized earth and they evolved key defense mechanisms to counteract microbial pathogens present in the new environment. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in early divergent land plants. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known function in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, indicating that they are part of the moss immune response and probably played an ancestral role related to effective adaptation mechanisms to cope with pathogen invasion during the conquest of land.Key MessageEvolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of the early divergent land plant Physcomitrium patens.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
ShiQiang Lin ◽  
ZhiJian Yang ◽  
BiFang Huang ◽  
ChuYun Bi ◽  
XiaoFang Huang ◽  
...  

AbstractThe Fusarium wilt disease caused by Fusarium oxysporum f. sp. batatas (Fob) is one of the devastating diseases of sweetpotato. However, the molecular mechanisms of sweetpotato response to Fob is poorly understood. In the present study, comparative quantitative proteomic analysis was conducted to investigate the defense mechanisms involved. Two sweetpotato cultivars with differential Fob infection responses were inoculated with Fob spore suspensions and quantitatively analyzed by Tandem Mass Tags (TMT). 2267 proteins were identified and 1897 of them were quantified. There were 817 proteins with quantitative ratios of 1.2-fold change between Fob-inoculated and mock-treated samples. Further, nine differentially expressed proteins were validated by Parallel Reaction Monitoring (PRM). According to Gene Ontology (GO) annotation information, the proteins functioned in molecular metabolism, cellular component formation, and biological processes. Interestingly, the results showed that sweetpotato resistant response to Fob infection included many proteins associated with signaling transduction, plant resistance, chitinase and subtilisin-like protease. The functions and possible roles of those proteins were discussed. The results provides first insight into molecular mechanisms involved in sweetpotato defense responses to Fob.


2021 ◽  
Vol 22 (6) ◽  
pp. 3002
Author(s):  
Manoj Kaushal ◽  
George Mahuku ◽  
Rony Swennen

Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases of banana. Methods to control the disease are still inadequate. The present investigation targeted expression of defense-related genes in tissue cultured banana plantlets of Fusarium resistant and susceptible cultivars after infection with biological control agents (BCAs) and Fusarium (Foc race 1). In total 3034 differentially expressed genes were identified which annotated to 58 transcriptional families (TF). TF families such as MYB, bHLH and NAC TFs were mostly up-regulated in response to pathogen stress, whereas AP2/EREBP were mostly down-regulated. Most genes were associated with plant–pathogen response, plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, selenocompound metabolism, phenylpropanoid biosynthesis, mRNA surveillance pathway, mannose type O-glycan biosynthesis, amino acid and nucleotide sugar metabolism, cyanoamino acid metabolism, and hormone signal transduction. Our results showed that the defense mechanisms of resistant and susceptible banana cultivars treated with BCAs, were regulated by differentially expressed genes in various categories of defense pathways. Furthermore, the association with different resistant levels might serve as a strong foundation for the control of Fusarium wilt of banana.


2021 ◽  
Author(s):  
Saif ul Malook ◽  
Xiao-Feng Liu ◽  
Wende Liu ◽  
Jinfeng Qi ◽  
Shaoqun Zhou

Fall armyworm (Spodoptera frugiperda) is an invasive lepidopteran pest with strong feeding preference towards maize (Zea mays). Its success on maize is facilitated by a suite of specialized detoxification and manipulation mechanisms that curtail host plant defense responses. In this study, we identified a Chinese maize inbred line Xi502 that was able to mount effective defense in response to fall armyworm attack. Comparative transcriptomics analyses, phytohormonal measurements, and targeted benzoxazinoid quantification consistently demonstrate significant inducible defense responses in Xi502, but not in the susceptible reference inbred line B73. In 24 hours, fall armyworm larvae feeding on B73 showed accelerated maturation-oriented transcriptomic responses and more changes in detoxification gene expression compared to their Xi502-fed sibling. Interestingly, oral secretions collected from larvae fed on B73 and Xi502 leaves demonstrated distinct elicitation activity when applied on either host genotypes, suggesting that variation in both insect oral secretion composition and host plant alleles could influence plant defense response. These results revealed host plant adaptation towards counter-defense mechanisms in a specialist insect herbivore, adding yet another layer to the evolutionary arms race between maize and fall armyworm. This could facilitate future investigation into the molecular mechanisms in this globally important crop-pest interaction system.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ranran Sun ◽  
Shiwen Qin ◽  
Tong Zhang ◽  
Zhenzhong Wang ◽  
Huaping Li ◽  
...  

Abstract Background Salicylic acid (SA) is a significant signaling molecule that induces rice resistance against pathogen invasion. Protein phosphorylation carries out an important regulatory function in plant defense responses, while the global phosphoproteome changes in rice response to SA-mediated defense response has not been reported. In this study, a comparative phosphoproteomic profiling was conducted by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis, with two near-isogenic rice cultivars after SA treatment. Results Thirty-seven phosphoprotein spots were differentially expressed after SA treatment, twenty-nine of which were identified by MALDI-TOF/TOF MS, belonging to nine functional categories. Phosphoproteins involved in photosynthesis, antioxidative enzymes, molecular chaperones were similarly expressed in the two cultivars, suggesting SA might alleviate decreases in plant photosynthesis, regulate the antioxidant defense activities, thus improving basal resistance response in both cultivars. Meanwhile, phosphoproteins related to defense, carbohydrate metabolism, protein synthesis and degradation were differentially expressed, suggesting phosphorylation regulation mediated by SA may coordinate complex cellular activities in the two cultivars. Furthermore, the phosphorylation sites of four identified phosphoproteins were verified by NanoLC-MS/MS, and phosphorylated regulation of three enzymes (cinnamoyl-CoA reductase, phosphoglycerate mutase and ascorbate peroxidase) was validated by activity determination. Conclusions Our study suggested that phosphorylation regulation mediated by SA may contribute to the different resistance response of the two cultivars. To our knowledge, this is the first report to measure rice phosphoproteomic changes in response to SA, which provides new insights into molecular mechanisms of SA-induced rice defense.


Sign in / Sign up

Export Citation Format

Share Document