scholarly journals Comparative proteomic analysis of the sweetpotato provides insights into response mechanisms to Fusarium oxysporum f. sp. batatas

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
ShiQiang Lin ◽  
ZhiJian Yang ◽  
BiFang Huang ◽  
ChuYun Bi ◽  
XiaoFang Huang ◽  
...  

AbstractThe Fusarium wilt disease caused by Fusarium oxysporum f. sp. batatas (Fob) is one of the devastating diseases of sweetpotato. However, the molecular mechanisms of sweetpotato response to Fob is poorly understood. In the present study, comparative quantitative proteomic analysis was conducted to investigate the defense mechanisms involved. Two sweetpotato cultivars with differential Fob infection responses were inoculated with Fob spore suspensions and quantitatively analyzed by Tandem Mass Tags (TMT). 2267 proteins were identified and 1897 of them were quantified. There were 817 proteins with quantitative ratios of 1.2-fold change between Fob-inoculated and mock-treated samples. Further, nine differentially expressed proteins were validated by Parallel Reaction Monitoring (PRM). According to Gene Ontology (GO) annotation information, the proteins functioned in molecular metabolism, cellular component formation, and biological processes. Interestingly, the results showed that sweetpotato resistant response to Fob infection included many proteins associated with signaling transduction, plant resistance, chitinase and subtilisin-like protease. The functions and possible roles of those proteins were discussed. The results provides first insight into molecular mechanisms involved in sweetpotato defense responses to Fob.

2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but the molecular mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To gain an improved understanding of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 h after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 h and other time points after inoculation. All ethylene-related and pathogenesis-related genes from among the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, these genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2021 ◽  
Author(s):  
Saif ul Malook ◽  
Xiao-Feng Liu ◽  
Wende Liu ◽  
Jinfeng Qi ◽  
Shaoqun Zhou

Fall armyworm (Spodoptera frugiperda) is an invasive lepidopteran pest with strong feeding preference towards maize (Zea mays). Its success on maize is facilitated by a suite of specialized detoxification and manipulation mechanisms that curtail host plant defense responses. In this study, we identified a Chinese maize inbred line Xi502 that was able to mount effective defense in response to fall armyworm attack. Comparative transcriptomics analyses, phytohormonal measurements, and targeted benzoxazinoid quantification consistently demonstrate significant inducible defense responses in Xi502, but not in the susceptible reference inbred line B73. In 24 hours, fall armyworm larvae feeding on B73 showed accelerated maturation-oriented transcriptomic responses and more changes in detoxification gene expression compared to their Xi502-fed sibling. Interestingly, oral secretions collected from larvae fed on B73 and Xi502 leaves demonstrated distinct elicitation activity when applied on either host genotypes, suggesting that variation in both insect oral secretion composition and host plant alleles could influence plant defense response. These results revealed host plant adaptation towards counter-defense mechanisms in a specialist insect herbivore, adding yet another layer to the evolutionary arms race between maize and fall armyworm. This could facilitate future investigation into the molecular mechanisms in this globally important crop-pest interaction system.


2002 ◽  
Vol 13 (11) ◽  
pp. 4100-4109 ◽  
Author(s):  
Alexander Scherl ◽  
Yohann Couté ◽  
Catherine Déon ◽  
Aleth Callé ◽  
Karine Kindbeiter ◽  
...  

The notion of a “plurifunctional” nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of ∼350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes.


2017 ◽  
Vol 28 (11) ◽  
pp. 1580-1589 ◽  
Author(s):  
Yuta Shimamoto ◽  
Sachiko Tamura ◽  
Hiroshi Masumoto ◽  
Kazuhiro Maeshima

Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers.


2006 ◽  
Vol 19 (8) ◽  
pp. 838-853 ◽  
Author(s):  
Slavica Djonović ◽  
Maria J. Pozo ◽  
Lawrence J. Dangott ◽  
Charles R. Howell ◽  
Charles M. Kenerley

The soilborne filamentous fungus Trichoderma virens is a biocontrol agent with a well-known ability to produce antibiotics, parasitize pathogenic fungi, and induce systemic resistance in plants. Even though a plant-mediated response has been confirmed as a component of bioprotection by Trichoderma spp., the molecular mechanisms involved remain largely unknown. Here, we report the identification, purification, and characterization of an elicitor secreted by T. virens, a small protein designated Sm1 (small protein 1). Sm1 lacks toxic activity against plants and microbes. Instead, native, purified Sm1 triggers production of reactive oxygen species in monocot and dicot seedlings, rice, and cotton, and induces the expression of defense-related genes both locally and systemically in cotton. Gene expression analysis revealed that SM1 is expressed throughout fungal development under different nutrient conditions and in the presence of a host plant. Using an axenic hydroponic system, we show that SM1 expression and secretion of the protein is significantly higher in the presence of the plant. Pretreatment of cotton cotyledons with Sm1 provided high levels of protection to the foliar pathogen Colletotrichum sp. These results indicate that Sm1 is involved in the induction of resistance by Trichoderma spp. through the activation of plant defense mechanisms.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Lina Liu ◽  
Shu Li ◽  
Alberto Cenci ◽  
Mathieu Rouard ◽  
...  

Abstract Background: Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the causal agent of Fusarium wilt, and is the most destructive soil-borne and vascular invasive fungus of banana. The sap circulating in vascular cells transports proteins including those that might be involved in disease-resistance processes. However, there is no research to analyze changes in banana vascular sap protein response to TR4 to date. Results: To gain an integrated understanding of differential protein abundance in banana vascular sap during TR4 infection, we performed a comparative proteomic analysis of vascular sap of the resistant ‘Pahang’ and the susceptible ‘Brazilian’ bananas inoculated with TR4. We identified 129 differential expression proteins (DEPs) between resistant and susceptible tested combinations. Of these DEPs, hypersensitive-induced response protein 1 (HIR1) and E3 ubiquitin ligase (E3) decreased in abundance in Pahang with no change in Brazilian under TR4 infection; chalcone isomerase (CHI) and glycine-rich RNA-binding protein (GRP) increased in abundance in Pahang but no significant changes in Brazilian under TR4 infection; carboxylesterase (CXE) and GDSL lipase (GLIP) were specifically in higher abundance in Pahang response to TR4 compared to that of Brazilian. It suggested that these proteins played important roles in bananas against TR4. Conclusions: Our study identified 129 DEPs in vascular sap between resistant and susceptible tested combinations. Of which, HIR1, E3, CHI, GRP, CXE and GLIP played important roles in bananas response to TR4. To our knowledge, this is first report to analyze changes in banana vascular sap proteins in response to TR4, which help us to explore the molecular mechanisms of banana defense to Fusarium wilt.


2020 ◽  
Author(s):  
Jingping Dong ◽  
Yuean Wang ◽  
Qianqian Xian ◽  
Xuehao Chen ◽  
Jun Xu

Abstract Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Foc), is a severe disease affecting cucumber (Cucumis sativus L.) production worldwide, but mechanisms underlying Fusarium wilt resistance in cucumber remain unknown. To better understand of the defense mechanisms elicited in response to Foc inoculation, RNA sequencing-based transcriptomic profiling of responses of the Fusarium wilt-resistant cucumber line ‘Rijiecheng’ at 0, 24, 48, 96, and 192 hours after Foc inoculation was performed.Results: We identified 4116 genes that were differentially expressed between 0 hour and other time points after inoculation. All ethylene-related and pathogenesis-related genes from the differentially expressed genes were filtered out. Real-time PCR analysis showed that ethylene-related genes were induced in response to Foc infection. Importantly, after Foc infection and exogenous application of ethephon, a donor of ethylene, the ethylene-related genes were highly expressed. In response to exogenous ethephon treatment in conjunction with Foc inoculation, the infection resistance of cucumber seedlings was enhanced and endogenous ethylene biosynthesis increased dramatically. Conclusion: Collectively, ethylene signaling pathways play a positive role in regulating the defense response of cucumber to Foc infection. The results provide insight into the cucumber Fusarium wilt defense mechanisms and provide valuable information for breeding new cucumber cultivars with enhanced Fusarium wilt tolerance.


2021 ◽  
Author(s):  
Alina Wiszniewska ◽  
Aleksandra Koźmińska ◽  
Ewa Hanus-Fajerska ◽  
Kinga Dziurka ◽  
Michał Dziurka

Abstract Aims The aim of this study was to compare the efficiency of three defense mechanisms (ionic balance, osmotic adjustment and counteracting oxidative stress) under low, moderate and high soil salinity in two related species of contrasting tolerance to salinity: the halophyte Aster tripolium and the glycophyte Aster alpinus, and to elucidate their phytohormone-mediated regulation. Methods The phytohormonal profiling was performed to asses correlations between the pool of plant growth regulators and parameters depicting ionic homeostasis, osmotic adjustment and antioxidant system. Results Defense mechanisms in both species were based on accumulation/activity of distinct compounds (Na+ and K+ ions, antioxidants), but differences among species concerned particularly soluble carbohydrates and betaines. The halophyte accumulated mannitol, uronic acids and sucrose, while the glycophyte mostly glucose and proline-betaine. The halophyte responses also correlated with changes in the content of plant growth promoting PGRs, as well as jasmonates and benzoic acid. The glycophyte responses corresponded with changes in content of abscisic acid and ethylene precursor, as well as salicylic acid. Conclusions We provided evidence that benzoic acid rather than salicylic acid is involved in salt tolerance in the halophyte and elevated SA content may enhance vulnerability to salt excess. An important element of tolerance trait is also JA-GA network that influences the intensity of defense responses. This study uncovers new aspects of internal phytohormonal regulation of plant reaction to soil salinity and enables further insight into extremophyte biology.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Lina Liu ◽  
Shu Li ◽  
Tingting Bai ◽  
Shengtao Xu ◽  
...  

Abstract Background Fusarium wilt is a destructive soilborne disease of banana caused by Fusarium oxysporum f. sp. cubense ( Foc ), especially Tropical Race 4 (TR4), which is a xylem-invading fungus. It was evident that xylem sap contained macromolecules, such as proteins, involved in disease-resistance processes. However, there is no research to analyze changes in banana xylem sap proteins response to TR4 to date. Methods To gain an integrated understanding of differential protein expression in banana xylem sap during TR4 infection, we performed a comparative proteomic analysis of xylem sap in resistant ‘Pahang’ and susceptible ‘Brazilian’ bananas inoculated with TR4. Results A total of 1036 proteins were detected in xylem sap of both bananas, among which some proteins are involved in ‘signal transduction’, ‘environmental adaptation’, ‘biosynthesis of secondary metabolites’ and ‘lipid metabolism’, indicating that xylem sap contained defense-related proteins. A number of 129 differential expression proteins (DEPs) were identified in 4 possible pairs between resistant and susceptible tested combinations. Of these DEPs, hypersensitive-induced response protein 1 (HIR1), E3 ubiquitin ligase (E3) might play negative roles in ‘Pahang’ response to TR4 attack, whereas chalcone isomerase (CHI), glycine-rich RNA-binding protein (GRP), carboxylesterase (CXE) and GDSL lipase (GLIP) might play positive roles in ‘Pahang’ defense against TR4 infection. Conclusions Banana xylem sap contained defense-related proteins, among which HIRP1, E3, CHI, GRP, CXE and GLIP involved in banana defense against TR4. To our knowledge, this is first report to analyze changes in banana xylem sap proteins response to TR4, which help us to explore molecular mechanisms of banana resistant to Fusarium wilt.


2020 ◽  
Author(s):  
Guillermo Reboledo ◽  
Astrid Agorio ◽  
Lucía Vignale ◽  
Ramón Alberto Batista-García ◽  
Inés Ponce De León

AbstractBryophytes were among the first plants that colonized earth and they evolved key defense mechanisms to counteract microbial pathogens present in the new environment. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in early divergent land plants. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known function in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, indicating that they are part of the moss immune response and probably played an ancestral role related to effective adaptation mechanisms to cope with pathogen invasion during the conquest of land.Key MessageEvolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of the early divergent land plant Physcomitrium patens.


Sign in / Sign up

Export Citation Format

Share Document