scholarly journals Prediction of mechanical properties and fatigue life of nano silver paste in chip interconnection

2020 ◽  
Author(s):  
Hui Yang ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.

2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


2020 ◽  
Author(s):  
Hui Yang ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


1998 ◽  
Vol 120 (4) ◽  
pp. 322-327 ◽  
Author(s):  
H. Doi ◽  
K. Kawano ◽  
A. Yasukawa ◽  
T. Sato

The effect of a heat spreader on the life of the solder joints for underfill-encapsulated, flip-chip packages is investigated through stress analyses and thermal cycling tests. An underfill with suitable mechanical properties is found to be able to prolong the fatigue life of the solder joints even in a package with a heat spreader and an alumina substrate. The delamination of the underfill from the chip is revealed as another critical failure mode for which the shape of the underfill fillet has a large effect.


2021 ◽  
Vol 1016 ◽  
pp. 875-881
Author(s):  
Michiya Matsushima ◽  
Kei Endo ◽  
Tetsuya Kawazoe ◽  
Shinji Fukumoto ◽  
Kozo Fujimoto

Strength of solder joints is usually evaluated by a shear test and a pull test. The reliability of the solder joint is evaluated by the repetitive pull tests of solder bulk specimens. However, the stress and strain field that caused by thermal load on the solder joint of the product model for estimating the reliability is different from these tests. Therefore, we proposed a repetitive bending test as a reliability test of solder joints producing the stress and strain field caused at the solder joint of product model. We proposed a repetitive multi-point bending test as a method to predict the fatigue life of the solder joint in the thermal cycle test in a short period of time. The influence of strain gradient on the inelastic strain amplitude used for lifetime evaluation is estimated. The controllability of the strain gradient by the three-point bending test parameters is investigated. The effect of residual stress on inelastic strain amplitude during sample preparation for thermal cycle test is also evaluated.


2021 ◽  
Vol 2065 (1) ◽  
pp. 012017
Author(s):  
Hong-lei Ran ◽  
Xiao-jie Sheng ◽  
Qiang Duan ◽  
Kui Zhang ◽  
Jie Huang

Abstract In this paper, a fast prediction method for thermal fatigue life of PoP laminated BGA Product was proposed. Firstly, the stress and strain of the solder joints of each layer of the laminated device in thermal fatigue test was determined by finite element simulation method. According to the research idea of relative stress and strain, the solder joints were divided into sensitive solder joints and reliable solder joints. Secondly, sensitive solder joint were connected with PCB traces through the internal pads, bonding wires, TSVs and reliable solder joints to form a daisy chain. Through real-time dynamic monitoring of the resistance change of the daisy chain in thermal fatigue test to judge whether the solder joints fail, and record the occurrence time of the first failure solder joint. Finally, the thermal fatigue life of the product was estimated by the Norris-Landzberg formula.


1994 ◽  
Vol 116 (4) ◽  
pp. 265-273 ◽  
Author(s):  
N. Paydar ◽  
Y. Tong ◽  
H. U. Akay

The elastic-plastic-creep characteristics of solder joints are implemented in a nonlinear finite element program ABAQUS by developing user defined material subroutines. An eutectic Pb-Sn solder joint of a resistor carrier under thermal cycling between 125°C and −55°C is modeled, and the effect of various parameters on the solder joint cycle life is evaluated. The strain range of the solder joint under thermal cycling loads is calculated, which is then converted into solder joint cycle life through a fatigue-life relationship proposed by Engelmaier (1983). The parameters studied include: ramp time, hold time, grain size, initial temperature, constitutive equations, material properties for solder alloys, and mesh refinement. The effects of these variations on the fatigue life of solder joints are illustrated. The described method can serve as a tool in the design and manufacturing of surface-mount (SMT) assemblies.


1999 ◽  
Vol 121 (2) ◽  
pp. 61-68 ◽  
Author(s):  
R. Chandaroy ◽  
C. Basaran

In the electronic industry, the dominant failure mode for solder joints is assumed to be thermal cycling. When semiconductor devices are used in vibrating environment, such as automotive and military applications, dynamic stresses contribute to the failure mechanism of the solder joint, and can become the dominant failure mode. In this paper, a damage mechanics based unified constitutive model for Pb40/Sn60 solder joints has been developed to accurately predict the thermomechanical behavior of solder joints under concurrent thermal and dynamic loading. It is shown that simultaneous application of thermal and dynamic loads significantly shorten the fatigue life. Hence, damage induced in the solder joint by the vibrations have to be included, in fatigue life predictions to correctly predict the reliability of solder joints. The common practice of relating only thermal cycling induced inelastic strain to fatigue life can be inadequate to predict solder joint reliability. A series of parametric studies were conducted to show that contrary to popular opinion all dynamic loading induced strains are not elastic. Hence, vibrations can significantly affect the fatigue life and reliability of solder joints in spite of their small mass.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000644-000648
Author(s):  
Mary Liu ◽  
Wusheng Yin

Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership. Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.


1992 ◽  
Vol 114 (4) ◽  
pp. 472-476 ◽  
Author(s):  
J. Sauber ◽  
J. Seyyedi

A power-law type creep equation has been added to finite element models to calculate solder joint response to time, temperature, and stress level. The ability of the models to predict solder joint behavior was verified by running a series of creep tests. The models were then solved to determine the solder joint creep strains which occur during thermal cycling. These creep strains were used to predict the degradation of pull strength resulting from thermal cycling. More than 8,600 solder joints were thermally cycled and then individually pull tested to verify the accuracy of the method.


Sign in / Sign up

Export Citation Format

Share Document