Effect of Stress Gradient on Heat Cycle Fatigue Life Prediction of Solder Joints by Repetitive Bending Test

2021 ◽  
Vol 1016 ◽  
pp. 875-881
Author(s):  
Michiya Matsushima ◽  
Kei Endo ◽  
Tetsuya Kawazoe ◽  
Shinji Fukumoto ◽  
Kozo Fujimoto

Strength of solder joints is usually evaluated by a shear test and a pull test. The reliability of the solder joint is evaluated by the repetitive pull tests of solder bulk specimens. However, the stress and strain field that caused by thermal load on the solder joint of the product model for estimating the reliability is different from these tests. Therefore, we proposed a repetitive bending test as a reliability test of solder joints producing the stress and strain field caused at the solder joint of product model. We proposed a repetitive multi-point bending test as a method to predict the fatigue life of the solder joint in the thermal cycle test in a short period of time. The influence of strain gradient on the inelastic strain amplitude used for lifetime evaluation is estimated. The controllability of the strain gradient by the three-point bending test parameters is investigated. The effect of residual stress on inelastic strain amplitude during sample preparation for thermal cycle test is also evaluated.

2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


1997 ◽  
Vol 119 (4) ◽  
pp. 228-235 ◽  
Author(s):  
H. U. Akay ◽  
N. H. Paydar ◽  
A. Bilgic

Fatigue lives of thermally loaded solder joints are predicted using the finite element method. An appropriate constitutive relation to model the time-dependent inelastic deformation of the near-eutectic solder is implemented into a commercial finite element code, and the stress-strain responses of different electronic assemblies under the applied temperature cycles are calculated. The finite element analysis results are coupled with a newly developed approach for fatigue life predictions by using a volume-weighted averaging technique instead of an approach based on the maximum stress and strain locations in the solder joint. Volume-weighted average stress and strain results of three electronic assemblies are related to the corresponding experimental fatigue data through least-squares curve-fitting analyses for determination of the empirical coefficients of two fatigue life prediction criteria. The coefficients thus determined predict the mean cycles-to-failure value of the solder joints. Among the two prediction criteria, the strain range criterion uses the inelastic shear strain range and the total strain energy criterion uses the total inelastic strain energy calculated over a stabilized loading cycle. The obtained coefficients of the two fatigue criteria are applied to the finite element analysis results of two additional cases obtained from the literature. Good predictions are achieved using the total strain energy criterion, however, the strain range criterion underestimated the fatigue life. It is concluded that the strain information alone is not sufficient to model the fatigue behavior but a combination of stress and strain information is required, as in the case of total inelastic strain energy. The superiority of the volume-weighted averaging technique over the maximum stress and strain location approach is discussed.


2020 ◽  
Author(s):  
Hui Yang ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


2021 ◽  
Vol 2065 (1) ◽  
pp. 012017
Author(s):  
Hong-lei Ran ◽  
Xiao-jie Sheng ◽  
Qiang Duan ◽  
Kui Zhang ◽  
Jie Huang

Abstract In this paper, a fast prediction method for thermal fatigue life of PoP laminated BGA Product was proposed. Firstly, the stress and strain of the solder joints of each layer of the laminated device in thermal fatigue test was determined by finite element simulation method. According to the research idea of relative stress and strain, the solder joints were divided into sensitive solder joints and reliable solder joints. Secondly, sensitive solder joint were connected with PCB traces through the internal pads, bonding wires, TSVs and reliable solder joints to form a daisy chain. Through real-time dynamic monitoring of the resistance change of the daisy chain in thermal fatigue test to judge whether the solder joints fail, and record the occurrence time of the first failure solder joint. Finally, the thermal fatigue life of the product was estimated by the Norris-Landzberg formula.


1999 ◽  
Vol 121 (2) ◽  
pp. 61-68 ◽  
Author(s):  
R. Chandaroy ◽  
C. Basaran

In the electronic industry, the dominant failure mode for solder joints is assumed to be thermal cycling. When semiconductor devices are used in vibrating environment, such as automotive and military applications, dynamic stresses contribute to the failure mechanism of the solder joint, and can become the dominant failure mode. In this paper, a damage mechanics based unified constitutive model for Pb40/Sn60 solder joints has been developed to accurately predict the thermomechanical behavior of solder joints under concurrent thermal and dynamic loading. It is shown that simultaneous application of thermal and dynamic loads significantly shorten the fatigue life. Hence, damage induced in the solder joint by the vibrations have to be included, in fatigue life predictions to correctly predict the reliability of solder joints. The common practice of relating only thermal cycling induced inelastic strain to fatigue life can be inadequate to predict solder joint reliability. A series of parametric studies were conducted to show that contrary to popular opinion all dynamic loading induced strains are not elastic. Hence, vibrations can significantly affect the fatigue life and reliability of solder joints in spite of their small mass.


2020 ◽  
Author(s):  
Hui Yang ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


Author(s):  
Tomohiro Takahashi ◽  
Qiang Yu ◽  
Masahiro Kobayashi

For power module, the reliability evaluation of thermal fatigue life by power cycling has been prioritized as an important concern. Since in power cycling produces there exists non-uniform temperature distribution in the power module, coupled thermal-structure analysis is required to evaluate thermal fatigue mechanism. The thermal expansion difference between a Si chip and a substrate causes thermal fatigue. In this study, thermal fatigue life of solder joints on power module was evaluated. The finite element method (FEM) was used to evaluate temperature distribution induced by joule heating. Higher temperature appears below the Al wire because the electric current flows through the bonding Al wire. Coupled thermal-structure analysis is also required to evaluate the inelastic strain distribution. The damage of each part of solder joint can be calculated from equivalent inelastic strain range and crack propagation was simulated by deleting damaged elements step by step. The initial cracks were caused below the bonding Al wire and propagated concentrically under power cycling. There is the difference from environmental thermal cycling where the crack initiated at the edge of solder layer. In addition, in order to accurately evaluate the thermal fatigue life, the factors affecting the thermal fatigue life of solder joint where verified using coupled electrical-thermal-structural analysis. Then, the relation between the thermal fatigue life of solder joint and each factor is clarified. The precision evaluation for the thermal fatigue life of power module is improved.


Author(s):  
Mitsuaki Kato ◽  
Takahiro Omori ◽  
Akihiro Goryu ◽  
Tomoya Fumikura ◽  
Kenji Hirohata

Abstract Power modules are being developed to increase power output. The larger current densities accompanying increased power output are expected to degrade solder joints in power modules by electromigration. In previous research, numerical analysis of solder for electromigration has mainly examined ball grid arrays in flip-chip packages in which many solder balls are bonded under the semiconductor device. However, in a power module, a single solder joint is uniformly bonded under the power device. Because of this difference in geometric shape, the effect of electromigration in the solder of power modules may be significantly different from that in the solder of flip chips packages. This report describes an electromigration analysis of solder joints for power modules using an electrical-thermal-stress coupled analysis. First, we validate our numerical implementation and show that it can reproduce the vacancy concentrations and hydrostatic stress almost the same as the analytical solutions. We then simulate a single solder joint to evaluate electromigration in a solder joint in a power module. Once inelastic strain appears, the rate of increase in vacancy concentration slows, while the inelastic strain continuously increases. This phenomenon demonstrates that elastic-plastic-creep analysis is crucial for electromigration analysis of solder joints in power modules. Next, the solder joint with a power device and a substrate as used in power modules was simulated. Plasticity-creep and longitudinal gradient generated by current crowding have a strong effect on significantly reducing the vacancy concentration at the anode edge over a long period of time.


Author(s):  
Takahiro Akutsu ◽  
Qiang Yu

This paper presents the influence of the micro structure on the crack propagation in lead free solder joint. The author’s group have studied the Manson-Coffin’s law for lead free solder joint by using the isothermal fatigue test and FEM analytical approaches to establish the practicable evaluation of thermal fatigue life of solder joints, for example, for the Sn-Cu-Ni solder, because this solder is attracted from the aspect of the decrease of solder leach in the flow process and material cost. However, even if the same loading is given to the solder joints of BGA test piece, there was a large dispersion in the fatigue life. Even though the effect of the shape difference has been considered, the range of the dispersion could not been explained sufficiently. In the study, the fatigue crack propagation modes in the solder joints were investigated, and an internal fatigue crack mode and an interfacial fatigue crack mode were confirmed. And the tendency of a shorter on fatigue life in the interfacial fatigue mode was confirmed. To clarify the mechanism of these fatigue crack modes, the crystal grain size in the solder joints was investigated before the fatigue test and also after the test. Furthermore, the verification of the mechanism using FEM models considering the crystal grain size was carried out. First of all, each element in FEM models matching to the average crystal grain size was made. Second, the inelastic strain ranges in each FEM models were studied. As a result, it was shown that the influence of the crude density of the crystal grain to the fatigue crack progress can be evaluated. In addition, the micro structure of the solder joint of large-scale electronic devices is observed, and FEM model was made based on the observation result. As a result, it was shown that the influence of the directionality with the crystal grain to the fatigue crack progress can be evaluated.


Sign in / Sign up

Export Citation Format

Share Document