scholarly journals Insertion of PATC-rich C. elegans introns into synthetic transgenes by golden-gate-based cloning

2021 ◽  
Author(s):  
Christian Frøkjær-Jensen

Abstract Transgenes are particularly prone to epigenetic silencing in the C. elegans germline. Here, we describe a protocol to insert introns containing a class of non-coding DNA named Periodic An/Tn Clusters (PATCs) into synthetic transgenes. PATCs can protect transgenes from position-dependent silencing (Position Effect Variegation, PEV) and from silencing in simple extra-chromosomal arrays. Using a set of simple design rules, it is possible to routinely insert up to three PATC-rich introns into a synthetic transgene in a single reaction.

Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 4055-4066 ◽  
Author(s):  
K. Stankunas ◽  
J. Berger ◽  
C. Ruse ◽  
D.A. Sinclair ◽  
F. Randazzo ◽  
...  

The Polycomb group of genes in Drosophila are homeotic switch gene regulators that maintain homeotic gene repression through a possible chromatin regulatory mechanism. The Enhancer of Polycomb (E(Pc)) gene of Drosophila is an unusual member of the Polycomb group. Most PcG genes have homeotic phenotypes and are required for repression of homeotic loci, but mutations in E(Pc) exhibit no homeotic transformations and have only a very weak effect on expression of Abd-B. However, mutations in E(Pc) are strong enhancers of mutations in many Polycomb group genes and are also strong suppressors of position-effect variegation, suggesting that E(Pc) may have a wider role in chromatin formation or gene regulation than other Polycomb group genes. E(Pc) was cloned by transposon tagging, and encodes a novel 2023 amino acid protein with regions enriched in glutamine, alanine and asparagine. E(Pc) is expressed ubiquitously in Drosophila embryogenesis. E(Pc) is a chromatin protein, binding to polytene chromosomes at about 100 sites, including the Antennapedia but not the Bithorax complex, 29% of which are shared with Polycomb-binding sites. Surprisingly, E(Pc) was not detected in the heterochromatic chromocenter. This result suggests that E(Pc) has a functional rather than structural role in heterochromatin formation and argues against the heterochromatin model for PcG function. Using homology cloning techniques, we identified a mouse homologue of E(Pc), termed Epc1, a yeast protein that we name EPL1, and as well as additional ESTs from Caenorhabditis elegans, mice and humans. Epc1 shares a long, highly conserved domain in its amino terminus with E(Pc) that is also conserved in yeast, C. elegans and humans. The occurrence of E(Pc) across such divergent species is unusual for both PcG proteins and for suppressors of position-effect variegation, and suggests that E(Pc) has an important role in the regulation of chromatin structure in eukaryotes.


2003 ◽  
Vol 23 (10) ◽  
pp. 3681-3691 ◽  
Author(s):  
Monika A. Jedrusik ◽  
Ekkehard Schulze

ABSTRACT Linker histones are nonessential for the life of single-celled eukaryotes. Linker histones, however, can be important components of specific developmental programs in multicellular animals and plants. For Caenorhabditis elegans a single linker histone variant (H1.1) is essential in a chromatin silencing process which is crucial for the proliferation and differentiation of the hermaphrodite germ line. In this study we analyzed the whole linker histone complement of C. elegans by telomeric position effect variegation in budding yeast. In this assay an indicator gene (URA3) placed close to the repressive telomeric chromatin structure is subject to epigenetically inherited gene inactivation. Just one out of seven C. elegans linker histones (H1.1) was able to enhance the telomeric position effect in budding yeast. Since these results reflect the biological function of H1.1 in C. elegans, we suggest that chromatin silencing in C. elegans is governed by molecular mechanisms related to the telomere-dependent silencing in budding yeast. We confirmed this hypothesis by testing C. elegans homologs of three yeast genes which are established modifiers of the yeast telomeric chromatin structure (SIR2, SET1, and RAD17) for their influence on repeat-dependent transgene silencing for C. elegans.


Science ◽  
2015 ◽  
Vol 348 (6242) ◽  
pp. 1481-1485 ◽  
Author(s):  
I. A. Tchasovnikarova ◽  
R. T. Timms ◽  
N. J. Matheson ◽  
K. Wals ◽  
R. Antrobus ◽  
...  

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 657-668 ◽  
Author(s):  
Randy Mottus ◽  
Richard E Sobel ◽  
Thomas A Grigliatti

Abstract For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that “poison” the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1227-1244 ◽  
Author(s):  
Steffi Kuhfittig ◽  
János Szabad ◽  
Gunnar Schotta ◽  
Jan Hoffmann ◽  
Endre Máthé ◽  
...  

Abstract The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkinDominant (ptnD), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptnD mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptnD is associated with dominant female sterility. +/+ embryos produced by ptnD/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptnD/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptnD. This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 609-621
Author(s):  
Thomas Westphal ◽  
Gunter Reuter

Abstract Compact chromatin structure, induction of gene silencing in position-effect variegation (PEV), and crossing-over suppression are typical features of heterochromatin. To identify genes affecting crossing-over suppression by heterochromatin we tested PEV suppressor mutations for their effects on crossing over in pericentromeric regions of Drosophila autosomes. From the 46 mutations (28 loci) studied, 16 Su(var) mutations of the nine genes Su(var)2-1, Su(var)2-2, Su(var)2-5, Su(var)2-10, Su(var)2-14, Su(var) 2-15, Su(var)3-3, Su(var)3-7, and Su(var)3-9 significantly increase in heterozygotes or by additive effects in double and triple heterozygotes crossing over in the ri-pp region of chromosome 3. Su(var)2-201 and Su(var) 2-1401 display the strongest recombinogenic effects and were also shown to enhance recombination within the light-rolled heterochromatic region of chromosome 2. The dominant recombinogenic effects of Su(var) mutations are most pronounced in proximal euchromatin and are accompanied with significant reduction of meiotic nondisjunction. Our data suggest that crossing-over suppression by heterochromatin is controlled at chromatin structure as well as illustrate the possible effects of heterochromatin on total crossing-over frequencies in the genome.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 211-220
Author(s):  
Donald A R Sinclair ◽  
Nigel J Clegg ◽  
Jennifer Antonchuk ◽  
Thomas A Milne ◽  
Kryn Stankunas ◽  
...  

Abstract Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, BSV, T(2;3)SbV, and In(2R)bwVDe2. Using reversion of a P element insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.


Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 945-959
Author(s):  
Vett K Lloyd ◽  
Donald A Sinclair ◽  
Thomas A Grigliatti

Position effect variegation (PEV) results from the juxtaposition of a euchromatic gene to heterochromatin. In its new position the gene is inactivated in some cells and not in others. This mosaic expression is consistent with variability in the spread of heterochromatin from cell to cell. As many components of heterochromatin are likely to be produced in limited amounts, the spread of heterochromatin into a normally euchromatic region should be accompanied by a concomitant loss or redistribution of the protein components from other heterochromatic regions. We have shown that this is the case by simultaneously monitoring variegation of a euchromatic and a heterochromatic gene associated with a single chromosome rearrangement. Secondly, if several heterochromatic regions of the genome share limited components of heterochromatin, then some variegating rearrangements should compete for these components. We have examined this hypothesis by testing flies with combinations of two or more different variegating rearrangements. Of the nine combinations of pairs of variegating rearrangements we studied, seven showed nonreciprocal interactions. These results imply that many components of heterochromatin are both shared and present in limited amounts and that they can transfer between chromosomal sites. Consequently, even nonvariegation portions of the genome will be disrupted by re-allocation of heterochromatic proteins associated with PEV. These results have implications for models of PEV.


Sign in / Sign up

Export Citation Format

Share Document