scholarly journals Behavioural, Histopathological, Genetic and Organism-Wide Responses to Phenanthrene-Induced Oxidative Stress in Eisenia Fetida Earthworms in Natural Soil Microcosms

Author(s):  
Falin He ◽  
Hanmei Yu ◽  
Huijian Shi ◽  
Xiangxiang Li ◽  
Shanshan Chu ◽  
...  

Abstract Phenanthrene (PHE) contamination not only changes the quality of soil environment but also threatens to the soil organisms. There is lack of focus on the eco-toxicity potential of contaminants in real soil in the current investigation. Here, we assessed the toxic effects of PHE on earthworms (Eisenia fetida) in natural soil matrix. PHE exhibited a relatively high toxicity to E. fetida in natural soil, with the LC50 determined to be 56.68 mg kg−1 after a 14-day exposure. Excessive ROS induced by PHE, leading to oxidative damage to biomacromolecules in E. fetida, including lipid peroxidation, protein carbonylation, and DNA damage. The antioxidant defense system (total antioxidant capacity, glutathione S-transferase, peroxidase, catalase, carboxylesterase, and superoxide dismutase) in E. fetida responded quickly to scavenge excess ROS and free radicals. Exposure to PHE resulted in earthworm avoidance responses (2.5 mg kg−1) and habitat function loss (10 mg kg−1). Histological observations indicated that the intestine, body wall, and seminal vesicle in E. fetida were severely damaged after exposure to high-dose PHE. Moreover, earthworm growth (weight change) and reproduction (cocoon production and the number of juvenile) were also inhibited after exposure to this pollutant. Furthermore, the integrated toxicity of PHE toward E. fetida at different doses and exposure times was assessed by the integrated biomarker response (IBR), which confirm that PHE is more toxic to earthworms in the high-dose and long-term exposure groups. Our results showed that PHE exposure induced oxidative stress, disturbed antioxidant defense system, and caused oxidative damage in E. fetida. These effects can trigger behavior changes and damaged histological structure, finally cause growth inhibition, genotoxicity, and reproductive toxicity in earthworms. The strength of this study is the comprehensive toxicity evaluation of PHE to earthworms and highlights the need to investigate the t eco-toxicity potential of exogenous environmental pollutants in a real soil environment.

2021 ◽  
Vol 22 (17) ◽  
pp. 9326
Author(s):  
Mirza Hasanuzzaman ◽  
Md. Rakib Hossain Raihan ◽  
Abdul Awal Chowdhury Masud ◽  
Khussboo Rahman ◽  
Farzana Nowroz ◽  
...  

The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.


Author(s):  
Howida Sayed Abou-Seif ◽  
Walaa Gamal Hozayen ◽  
Khalid Shaaban Hashem

Abstract Background The liver is the largest important organ and the site for essential biochemical reactions and detoxifying toxic substances in the human body. Long-term, high-dose dexamethasone administration can cause severe alterations in liver function. Therefore, Thymus vulgaris leave extract possess a modulatory role on dexamethasone-induced hepatotoxicity by attenuating antioxidant defense system. By subcutaneous route, animals will receive three doses per week for 8 weeks of dexamethasone (0.1 mg/kg. b. wt.) concomitant with oral administration of thyme aqueous extract (500 mg/kg b.wt.). Results DXM treatment led to a marked increase in the liver function enzyme activities that are successfully ameliorated by thyme aqueous extract. Thyme natural antioxidants augmented the antioxidant defense system that overcomes oxidative stress caused by dexamethasone. Conversely, although dexamethasone-treated animals rose lipid peroxidation, thyme extract pretreatment did the reverse. Conclusion Hepatotoxicity and oxidative stress caused by dexamethasone might improve by thyme natural antioxidants.


2013 ◽  
Vol 304 (5) ◽  
pp. E495-E506 ◽  
Author(s):  
S. Keipert ◽  
M. Ost ◽  
A. Chadt ◽  
A. Voigt ◽  
V. Ayala ◽  
...  

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


2009 ◽  
Vol 39 (4) ◽  
pp. 723-730 ◽  
Author(s):  
Jihong Qin ◽  
Qing Liu

In the subalpine zone of the Qinghai–Tibetan Plateau of China, Dragon spruce (Picea asperata Mast.) is commonly used for reforestation. The aim of the present work was to study the effects of seasonally frozen soil on the germination of P. asperata seeds and to investigate whether these effects were associated with resumption of the antioxidant defense system. The nonfrozen treatment resulted in near failure of germination (1%) and was associated with relatively high levels of hydrogen peroxide (H2O2) and low activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxide (APX). Germination of P. asperata seeds at 10 cm under the seasonally frozen soil was higher than that at 5 cm by 26%; this higher germination rate was associated with the recovery of SOD, CAT, and APX activities. The levels of malondialdehyde (MDA) in seeds from seasonally frozen treatments were higher than those in the nonfrozen treatment, implying greater lipid peroxidation and that frozen seeds might have suffered from oxidative stress. The results indicate that seasonally frozen soil facilitated the germination of P. asperata seeds and that germination was closely related to the resumption of antioxidant enzymes activity. Overall, these findings suggest that the disappearance of seasonally frozen ground caused by global warming might result in failure of regeneration of P. asperata.


2014 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Khalid Mohammed Naji ◽  
Maher Ali Al-Maqtari ◽  
Adnan Ali Al-Asbahi ◽  
Qais Yusuf M. Abdullah ◽  
R. Nagesh Babu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document