scholarly journals Effect of Temperature On Re-entrant Condensation of Globular Protein in Presence of Tri-Valent Ions

Author(s):  
Subhankar Pandit ◽  
Sarathi Kundu

Abstract Globular proteins play several essential roles in functioning different mechanisms of the living organisms, and the stability of such protein molecules in an aqueous solution is strongly affected by multivalent ions. In this article, we have systematically studied the effect of temperature (between 5 and 25ºC) on the re-entrant condensation behaviour of bovine serum albumin (BSA) in the presence of trivalent ions, Yttrium (Y3+), and Lanthanum (La3+). The effect of temperature is explained considering the optical properties of the protein, i.e., from the optical absorption and emission behaviours. The absorption in the visible region and the fluorescence emission of BSA becomes maximum at the lowest temperature. The decrement of mobility at lower temperature is responsible for fluorescence enhancement. Moreover, the activation energy of the turbid or viscus phase of the BSA protein under re-entrant condensation is enhanced in comparison with the transparent phase and the corresponding energy value is estimated from the fluorescence study.

2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2020 ◽  
Vol 17 (6) ◽  
pp. 472-478
Author(s):  
Wei-tao Gong ◽  
Wei-dong Qu ◽  
Guiling Ning

Two pyridinium amide-based receptors L1 and L2 with a small difference of H-bond position of the amide have been synthesized and characterized. Interestingly, they exhibited a huge difference in sensing towards AcO- and H2PO4 -, respectively. Receptor L1 was found to be ‘naked-eye’ selective for AcO- anions, while receptor L2 showed clear fluorescence enhancement selective to H2PO4 - anion. The recognition ability has been established by fluorescence emission, UV-vis spectra, and 1HNMR titration.


Author(s):  
Olusola Akinbami ◽  
Grace N Ngubeni ◽  
Francis Otieno ◽  
Rudo Kadzutu-Sithole ◽  
Cebisa Linganiso ◽  
...  

2D hybrid perovskites are promising materials for solar cell applications, in particular, cesium based perovskite nanocrystals as they offer the stability that is absent in organic-inorganic perovskite. However, the most...


2020 ◽  
Vol 8 (44) ◽  
pp. 15622-15625
Author(s):  
Hao Guo ◽  
Xin Yan ◽  
Bing Lu ◽  
Jin Wang ◽  
Xiaolei Yuan ◽  
...  

Two-step sequential fluorescence emission enhanced supramolecular nanoparticles are constructed from pillar[5]arene based host–guest interaction and a linear amphiphile. These supramolecular nanoparticles can be applied in mitochondria-targeted live cell imaging.


2017 ◽  
Vol 890 ◽  
pp. 82-85 ◽  
Author(s):  
Reymark D. Maalihan ◽  
Bryan B. Pajarito

This work reports the effect of temperature on degradation of colored low-density polyethylene (PE) films during thermal aging. Film samples were formulated according to Taguchi design of experiments where colorant, thickness, and pro-oxidant concentration were varied accordingly. Tensile properties of films were monitored with time during heat aging in a hot air oven at 50, 70, and 90 °C. Likewise, surfaces of aged films were analyzed to evaluate the degree of oxidation of PE during thermal aging. The Arrhenius equation was then used to predict the lifetime of PE at an in-use temperature of 30 °C. Results indicate that increasing the temperature reduces the tensile strength and modulus of films. Formation of carbonyl groups as degradation products is also observed at higher temperatures. Consequently, thermal aging at 90 °C offers the highest extent of degradation of exposed films. Regression analysis reveals that white films degrade at a higher rate than yellow and non-colored films. The presence of TiO2 in white films shortens the lifetime of PE while amine stabilizer in yellow films enhances the stability of PE during thermal aging.


2013 ◽  
Vol 634-638 ◽  
pp. 2462-2465
Author(s):  
Wen Xian Li ◽  
Bo Yang Ao ◽  
Jing Zhang

A novel ligand with double sulfinyl groups, bis(benzylsulfinyl)methane L, was synthesized by a new method. Its novel ternary complex, has been synthesized [using L as the first ligand, and dipyridyl L' as the second ligand]. In order to study the effect of the second ligand on the fluorescence properties of rare-earth sulfoxide complex, a novel binary europium complex has been synthesized. Photoluminescent measurement showed that the first ligand L could efficiently transfer the energy to Eu (III) ions in the complex. Furthermore, the detailed luminescence analyses on the rare earth complexes indicated that the ternary Eu (III) complex manifested stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary Eu (III) materials. The fluorescence emission intensities and fluorescence lifetimes of the ternary complex enhanced more obviously than the binary complex.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Andery Lim ◽  
Noramaliyana Haji Manaf ◽  
Kushan Tennakoon ◽  
R. L. N. Chandrakanthi ◽  
Linda Biaw Leng Lim ◽  
...  

Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect.


2012 ◽  
Vol 3 (1) ◽  
pp. 18-23
Author(s):  
M. V. Gorelaya

It was tested and integrated the methodological approach to the research of xenobiotic compounds impact on protein molecules. For this purpose three groups of research methods were used: turbidimetry, immunochemistry and study of the impact on isoelectric point of proteins. The immunochemical methods are most specific. The turbidimetric methods are fastest and informative. Actually, the proposed methodological approach is integrated and versatile. These methods are effective for studying the xenobiotic influence on proteins in living organisms on the assumption of its complex applications. It was proved that this methodological approach is adequate, informative and easy to use. 


2007 ◽  
Vol 38 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Joseph Hermann ◽  
Steve Hoff ◽  
Claudia Muñoz-Zanzi ◽  
Kyoung-Jin Yoon ◽  
Michael Roof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document