scholarly journals Robust Prediction of Personalized In Vivo Response to Unseen Drugs From In Vitro Screens Using a Novel Context-Aware Deconfounding Autoencoder

Author(s):  
Di He ◽  
Qiao Liu ◽  
Lei Xie

Abstract Accurate and robust prediction of patient-specific responses to drug treatments is critical for drug development and personalized medicine. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell line data, few of them can reliably predict individual patient clinical responses to new drugs due to data distribution shift and confounding factors. We have developed a novel Context-aware Deconfounding Autoencoder (CODE-AE) that can extract intrinsic biological signals masked by context-specific patterns and confounding factors. Extensive comparative studies demonstrated that CODE-AE effectively alleviated the out-of-distribution problem for the model generalization, significantly improved accuracy and robustness over state-of-the-art methods in predicting patient-specific in vivo drug responses purely from in vitro screens. Using CODE-AE, we screened 59 drugs for 9,808 cancer patients. Our results are consistent with existing clinical observations, suggesting the potential of CODE-AE in developing personalized anti-cancer therapies and drug-response biomarkers.

2021 ◽  
Author(s):  
Di He ◽  
Qiao Liu ◽  
Lei Xie

Abstract Accurate and robust prediction of patient-specific responses to drug treatments is critical for drug development and personalized medicine. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell line data, few of them can reliably predict individual patient clinical responses to new drugs due to data distribution shift and confounding factors. We develop a novel Context-aware Deconfounding Autoencoder (CODE-AE) that can extract common biological signals masked by context-specific patterns and confounding factors. Extensive studies demonstrate that CODE-AE effectively alleviates the out-of-distribution problem for the model generalization, significantly improves accuracy and robustness over state-of-the-art methods in both predicting patient-specific ex vivo and in vivo drug responses purely from in vitro screens and disentangling intrinsic biological signals from confounding factors. Using CODE-AE, we screened 50 drugs for 9,808 cancer patients and discovered novel personalized anti-cancer therapies and drug-response biomarkers.


2021 ◽  
Author(s):  
Di He ◽  
Qiao Liu ◽  
Lei Xie

Accurate and robust prediction of patient-specific responses to drug treatments is critical for drug development and personalized medicine. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell line data, few of them can reliably predict individual patient clinical responses to new drugs due to data distribution shift and confounding factors. We develop a novel Context-aware Deconfounding Autoencoder (CODE-AE) that can extract common biological signals masked by context-specific patterns and confounding factors. Extensive studies demonstrate that CODE-AE effectively alleviates the out-of-distribution problem for the model generalization, significantly improves accuracy and robustness over state-of-the-art methods in both predicting patient-specific ex vivo and in vivo drug responses purely from in vitro screens and disentangling intrinsic biological signals from confounding factors. Using CODE-AE, we screened 50 drugs for 9,808 cancer patients and discovered novel personalized anti-cancer therapies and drug-response biomarkers.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2018 ◽  
Vol 24 (10) ◽  
pp. 1138-1147
Author(s):  
Bruno Rivas-Santiago ◽  
Flor Torres-Juarez

Tuberculosis is an ancient disease that has become a serious public health issue in recent years, although increasing incidence has been controlled, deaths caused by Mycobacterium tuberculosis have been accentuated due to the emerging of multi-drug resistant strains and the comorbidity with diabetes mellitus and HIV. This situation is threatening the goals of World Health Organization (WHO) to eradicate tuberculosis in 2035. WHO has called for the creation of new drugs as an alternative for the treatment of pulmonary tuberculosis, among the plausible molecules that can be used are the Antimicrobial Peptides (AMPs). These peptides have demonstrated remarkable efficacy to kill mycobacteria in vitro and in vivo in experimental models, nevertheless, these peptides not only have antimicrobial activity but also have a wide variety of functions such as angiogenesis, wound healing, immunomodulation and other well-described roles into the human physiology. Therapeutic strategies for tuberculosis using AMPs must be well thought prior to their clinical use; evaluating comorbidities, family history and risk factors to other diseases, since the wide function of AMPs, they could lead to collateral undesirable effects.


2020 ◽  
Vol 21 ◽  
Author(s):  
Boniface Pone ◽  
Ferreira Igne Elizabeth

: Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas disease are among the most severe NTDs, and are caused by the Leishmania sp, and Trypanosoma cruzi, respectively. Glucantime, pentamidine and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance, and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, which chemical groups are known to improve the biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluoro-synthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth to mention that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro- and chloro-groups in the compound backbone. All in all, nitro and h0alogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts on in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies, and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jie Deng ◽  
Marco Tulio Angulo ◽  
Serguei Saavedra

AbstractMicrobes form multispecies communities that play essential roles in our environment and health. Not surprisingly, there is an increasing need for understanding if certain invader species will modify a given microbial community, producing either a desired or undesired change in the observed collection of resident species. However, the complex interactions that species can establish between each other and the diverse external factors underlying their dynamics have made constructing such understanding context-specific. Here we integrate tractable theoretical systems with tractable experimental systems to find general conditions under which non-resident species can change the collection of resident communities—game-changing species. We show that non-resident colonizers are more likely to be game-changers than transients, whereas game-changers are more likely to suppress than to promote resident species. Importantly, we find general heuristic rules for game-changers under controlled environments by integrating mutual invasibility theory with in vitro experimental systems, and general heuristic rules under changing environments by integrating structuralist theory with in vivo experimental systems. Despite the strong context-dependency of microbial communities, our work shows that under an appropriate integration of tractable theoretical and experimental systems, it is possible to unveil regularities that can then be potentially extended to understand the behavior of complex natural communities.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fangfang Tao ◽  
Yanrong Zhang ◽  
Zhiqian Zhang

Mitochondria are highly dynamic double-membrane organelles which play a well-recognized role in ATP production, calcium homeostasis, oxidation-reduction (redox) status, apoptotic cell death, and inflammation. Dysfunction of mitochondria has long been observed in a number of human diseases, including cancer. Targeting mitochondria metabolism in tumors as a cancer therapeutic strategy has attracted much attention for researchers in recent years due to the essential role of mitochondria in cancer cell growth, apoptosis, and progression. On the other hand, a series of studies have indicated that traditional medicinal herbs, including traditional Chinese medicines (TCM), exert their potential anticancer effects as an effective adjunct treatment for alleviating the systemic side effects of conventional cancer therapies, for reducing the risk of recurrence and cancer mortality and for improving the quality of patients’ life. An amazing feature of these structurally diverse bioactive components is that majority of them target mitochondria to provoke cancer cell-specific death program. The aim of this review is to summarize the in vitro and in vivo studies about the role of these herbs, especially their bioactive compounds in the modulation of the disturbed mitochondrial function for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document