scholarly journals Experimental Study On Hysteretic Behavior of Concrete Filled Square CFRP Steel Tubular Beam-Column

Author(s):  
Wang Qing-li ◽  
Kuan Peng ◽  
Guo Yi-Huan ◽  
Shao Yong-bo

Abstract In order to study the hysteretic behavior of concrete filled square CFRP steel tubular Beam-Column under different influence factors, 12 specimens were designed, and the failure mode, middle section lateral force-deflection(P-Δ) curve, middle section bending moment-curvature(M-φ) curve and middle section deflection-deformation(Δ−Δ') curve were studied. Axial compression ratio and longitudinal CFRP reinforcement coefficient as influencing factors, the effects of axial compression ratio and longitudinal CFRP reinforcement coefficient on P-Δ skeleton curve, M-φ skeleton curve, strength and stiffness degradation, ductility, cumulative energy consumption and other indexes were studied; the P-Δ curve and deformation mode of the specimens were simulated by ABAQUS, and the effects of axial compression ratio, slenderness ratio and other main parameters on the hysteretic performance of the members were studied. The test results show that CFRP has good lateral restraint and longitudinal reinforcement effect on CFST, and the local buckling of CFST is delayed. The P-Δ curve and M-φ curve of all specimens are full. In addition, the steel tube and CFRP have good synergy in both longitudinal and transverse directions. The change of axial compression ratio and longitudinal CFRP reinforcement coefficient has no significant effect on the strength degradation. The increase of axial compression ratio and longitudinal CFRP reinforcement coefficient can improve the flexural capacity and stiffness of the specimens, and slow down the stiffness degradation, but reduce the ductility and cumulative energy consumption of the specimens. The finite element software ABAQUS is used to simulate the P-Δ curve and deformation mode of specimens. It is found that the simulation results are in good agreement with the experimental results. Based on the model analysis of the main parameters, it is found that the increase of steel yield strength and CFRP layers can improve the bearing capacity of the specimens, and the axial compression ratio has the most significant effect on the specimens.

2014 ◽  
Vol 670-671 ◽  
pp. 344-348 ◽  
Author(s):  
Wen Feng Chen ◽  
Xiao Hui Yuan ◽  
Bin Li

Three model specimens of alkali-activated slag concrete filled steel tube (AAS-CFST) with different axial compression ratio and steel ratio were designed and tested in the present study. The seismic performance of the structures were evaluated by testing them with combined lateral constant compression and vertical cyclic loads. The structural performance, such as the testing observations, hysteretic behavior, skeleton curve, stiffness degradation, energy dissipation capacity and ductility performance was discussed in detailed. The results show that all the specimens’ damage were bending deformation mode, and the hysteretic curves are relatively smooth. Test data indicated that increased the axial compression ratio improved the load bearing capacity, initial stiffness.


2020 ◽  
pp. 136943322096372
Author(s):  
Xiuli Du ◽  
Min Wu ◽  
Hongtao Liu

In order to study the seismic performance of precast short-leg shear wall connected by grouting sleeves (PSSW), the three-dimensional numerical model was established by using the experiment of PSSW subjected to low cyclic loading. Based on good agreement between numerical results and experimental results, the numerical analysis models with different structural parameters of axial compression ratio and splicing position were designed in detail, and the effects of various parameters on the seismic performance of PSSW were analyzed. The results show that the PSSW exhibits wide and stable hysteresis loops, indicating a satisfactory hysteretic performance and an excellent energy consumption capacity. With the increase of the axial compression ratio, the shear capacity of horizontal splice seam is improved, but the ductility coefficient and total energy consumption decrease obviously. The most disadvantageous position of PSSW can be effectively avoided by changing the position of the post pouring seam. The bearing capacity of the specimens is basically stable, and the energy consumption increases significantly, so the post pouring seam of precast wall is recommended to be far away from the bottom section of the wall. In addition, the failure mechanism of different splicing positions was analyzed in detail.


2012 ◽  
Vol 472-475 ◽  
pp. 757-760
Author(s):  
Ya E Li ◽  
Yu Hong Tang ◽  
Zhi Hua Li ◽  
Zhi Hai Hao

In this paper, research on I-shaped short pier shear wall model which is the relatively weak seismic system components is presented. According to the results of Finite element software ABAQUS simulation, the influence of the bearing capacity, ductility and skeleton curve behavior on the I-shaped short pier shear wall with concealed bracings is mainly studied under different axial compression ratio and different reinforcement proportion of the concealed bracings. The results indicate that the I-shaped short pier shear wall with concealed bracings has a higher carrying capacity, and the ductility has also been enhanced. And the factor that axial compression ratio, reinforcement proportion of the concealed bracings significantly affect the seismic behavior of the I-shaped short pier shear wall with concealed bracings


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Mengqiang Guo ◽  
Yanli Shen

In order to improve the energy consumption capacity of the assembled self-resetting pier, the mild steel damper is added to the prefabricated self-resetting pier to form a prefabricated self- resetting pier with an external mild steel damper. Two sets of pier models were established by numerical simulation. On the basis of verifying the correctness of the traditional prefabricated self- resetting pier model, the two sets of pier models were subjected to low-cycle reciprocating loading to study the influence of the mild steel damper yield strength parameters and the pier axial compression ratio parameters on the seismic performance of the pier structure. The results show that compared with traditional prefabricated self-resetting piers, the hysteresis curve of self-resetting piers with mild steel dampers is fuller, and energy consumption and bearing capacity are greatly improved. With the increase of the yield strength of the mild steel damper, the energy consumption capacity will decrease when the loading displacement is less than 25mm, but the overall energy consumption capacity will increase. As the axial compression ratio of the pier column increases, the bearing capacity and energy consumption capacity of the structure increase significantly, but the impact is not obvious when the axial compression ratio exceeds 0.052.


2013 ◽  
Vol 438-439 ◽  
pp. 501-504
Author(s):  
Jun Yan Lu ◽  
Wei Wang Pang ◽  
Shuai Chang

Through earthquake simulation experiment of nine regional confined concrete columns with different axial compression ratio, the bearing capacity and seismic behavior of regional confined concrete columns were studied in this paper. Considering the ductility, stiffness, energy-dissipation performance and related factors of regional confined concrete columns under different axial compression ratio, by comparative analysis of the hysteretic behavior of the specimens, the limit of axial compression ratio of regional confined concrete columns is proposed for seismic design.


2010 ◽  
Vol 163-167 ◽  
pp. 3575-3579
Author(s):  
Yuan Che ◽  
Qing Li Wang ◽  
Yong Bo Shao ◽  
Xu Zhang

Based on analysis of the hysteretic experimental results of the concrete filled square CFRP-steel tubular (S-CFRP-CFST) beam-columns, it shows that the steel tube and the CFRP material can work concurrently both in longitudinal and transverse directions, the longitudinal strain and the transverse strain at a same point have opposite action. Additionally, the deflection curves of all the specimens are close to half sinusoidal shape. Analysis indicates that there is some strength degradation. The axial compression ratio and strengthening factor of the longitudinal CFRP can enhance the strength and the stiffness of the members and they can also delay the stiffness degradation. However, they will decrease the accumulated energy dissipation of the members. The axial compression ratio is beneficial to seismic behaviors to some extent.


2011 ◽  
Vol 250-253 ◽  
pp. 3355-3360
Author(s):  
Peng Chang ◽  
Hang Zeng

Based on the numerical simulation of the basic behavior of multi-ribbed composite wall under low frequency cyclic load, the skeleton curve is consistent with the experimental results. Also, the factors such as axial compression ratio, the intensity of filling blocks and the shear span ratio which may influence the shape of the skeleton curves are analyzed. The results shows that the yield load of multi-ribbed composite wall as well as the limit load are positively related to the block strength, while are negatively related to shear span ratio. Besides, by the method of finite element model, 9 groups of skeleton curve data of multi-ribbed composite wall in different axial compression ratio, shear span ratio and the intensity of filling blocks were simulated. On the basis of multiple linear regression analysis of the numerical results, the equations for calculating the feature points in the skeleton curve are given.


2013 ◽  
Vol 351-352 ◽  
pp. 671-674
Author(s):  
Ya Feng Xu ◽  
Ri Liang Li ◽  
Shou Yan Bai

In this paper, the finite element analysis software ABAQUS is used to study the hysteretic property of cross steel reinforced concrete special-shaped column in different axial compression ratios. In the same condition, we can get the deformation diagram of cross steel reinforced concrete special-shaped column which the axial compressive ratio is 0.0, 0.4, 0.5, 0.6, 0.7 and 0.8 by changing the axial load of the column, then extract the hysteretic curve and skeleton curve. By contrast, it can be seen that the hysteretic property of column reduce with the increasing of axial compression ratio, and the ultimate bearing capacity of column also reduce with the increasing of axial compression ratio.


2020 ◽  
pp. 136943322097729
Author(s):  
Zhiheng Deng ◽  
Changchun Xu ◽  
Jian Zeng ◽  
Huaping Wang ◽  
Xiaoping Wu ◽  
...  

The structural performance of a frame joint is particularly important, which can determine the safe state of the global structure. For this reason, the seismic performance of the truss steel reinforced concrete (SRC) beam-column frame joints is investigated by the experimental study and the nonlinear finite element modeling. The main design parameters include the section size of the web rods, the axial compression ratio and the section size of I-steel. The failure mechanism, load-displacement skeleton curve, the ductility and energy dissipation capacity, and shear deformation in the core zone of the truss SRC beam-column joints are studied. A formula is put forward to describe the shear bearing-capacity of the joints. The results indicate that the truss SRC beam-column frame joints generally have good seismic performance. The size of steel and web members have impact on the seismic performance of the truss SRC beam-column joints, and the axial compression ratio is an important factor that impacts the hysteresis behavior and energy dissipation. The proposed shear bearing-capacity formula can objectively reflect the performance of the joints.


Sign in / Sign up

Export Citation Format

Share Document