scholarly journals RESEARCH ON THE INFLUENCE OF MILD STEEL DAMPERS ON SEISMIC PERFORMANCE OF SELF-RESETTING PIER

2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Mengqiang Guo ◽  
Yanli Shen

In order to improve the energy consumption capacity of the assembled self-resetting pier, the mild steel damper is added to the prefabricated self-resetting pier to form a prefabricated self- resetting pier with an external mild steel damper. Two sets of pier models were established by numerical simulation. On the basis of verifying the correctness of the traditional prefabricated self- resetting pier model, the two sets of pier models were subjected to low-cycle reciprocating loading to study the influence of the mild steel damper yield strength parameters and the pier axial compression ratio parameters on the seismic performance of the pier structure. The results show that compared with traditional prefabricated self-resetting piers, the hysteresis curve of self-resetting piers with mild steel dampers is fuller, and energy consumption and bearing capacity are greatly improved. With the increase of the yield strength of the mild steel damper, the energy consumption capacity will decrease when the loading displacement is less than 25mm, but the overall energy consumption capacity will increase. As the axial compression ratio of the pier column increases, the bearing capacity and energy consumption capacity of the structure increase significantly, but the impact is not obvious when the axial compression ratio exceeds 0.052.

2020 ◽  
pp. 136943322096372
Author(s):  
Xiuli Du ◽  
Min Wu ◽  
Hongtao Liu

In order to study the seismic performance of precast short-leg shear wall connected by grouting sleeves (PSSW), the three-dimensional numerical model was established by using the experiment of PSSW subjected to low cyclic loading. Based on good agreement between numerical results and experimental results, the numerical analysis models with different structural parameters of axial compression ratio and splicing position were designed in detail, and the effects of various parameters on the seismic performance of PSSW were analyzed. The results show that the PSSW exhibits wide and stable hysteresis loops, indicating a satisfactory hysteretic performance and an excellent energy consumption capacity. With the increase of the axial compression ratio, the shear capacity of horizontal splice seam is improved, but the ductility coefficient and total energy consumption decrease obviously. The most disadvantageous position of PSSW can be effectively avoided by changing the position of the post pouring seam. The bearing capacity of the specimens is basically stable, and the energy consumption increases significantly, so the post pouring seam of precast wall is recommended to be far away from the bottom section of the wall. In addition, the failure mechanism of different splicing positions was analyzed in detail.


2014 ◽  
Vol 578-579 ◽  
pp. 16-19
Author(s):  
Xin Wen ◽  
Ze Jing Hao ◽  
Xing Guo Wang

Nodes of Column ends, included ordinary Intermediate nodes and nodes in the model of carbon fiber, have been established based on finite element program, have analyzed the comparison of the deformation, bearing capacity, ductility in Quasi static state under three conditions of axial compression ratio reinforcement (0.2, 0.4, 0.6) between reinforcement nodes and ordinary nodes, have researched the impact caused by the change of axial pressure ratio on seismic performance of node, The result have shown that size of the axial compression ratio and bearing capacity of reinforced nodes follow basic plastics performance, but ductility of nodes in low axial compression ratio is more effective.


2014 ◽  
Vol 501-504 ◽  
pp. 1580-1586
Author(s):  
Jian Yang Xue ◽  
Jian Peng Lin ◽  
Hui Ma

The pseudo-static tests were carried out on seven steel reinforced recycled concrete columns. The main parameters of specimens were recycled aggregate replacement ratio, axial compression ratio and volumetric stirrup ratio. The results indicate that the incorporation of recycled aggregate doesnt reduce the horizontal bearing capacity, ductility and the energy dissipation capacity of specimens and has little effect on seismic performance. The seismic performance of steel reinforced recycled concrete column decreases significantly in the high axial compression ratio. The ductility, horizontal bearing capacity and the energy dissipation capacity of the steel reinforced recycled concrete column increase with a rise in the volumetric stirrup ratio. This study provides a reference on the application of the steel reinforced recycled concrete column.


2014 ◽  
Vol 578-579 ◽  
pp. 244-247
Author(s):  
Ya Feng Xu ◽  
Zhang Lin Zhai ◽  
Pi Yuan Xu

This article researches seismic performance of the joint of cellular steel column and steel beam through simulation of the finite element software. With the change of axial force, we can attain the load-displacement hysteretic curves, skeleton curves under the different axial compression ratio, and then analyze their bearing capacity, ductility, energy dissipation and other mechanical properties. Results show that, the decrease of axial compression ratio is helpful to improve the bearing capacity of specimens. The joints of cellular steel column and steel beam have full hysteretic curve, good ductility and seismic performance.


2020 ◽  
pp. 136943322097729
Author(s):  
Zhiheng Deng ◽  
Changchun Xu ◽  
Jian Zeng ◽  
Huaping Wang ◽  
Xiaoping Wu ◽  
...  

The structural performance of a frame joint is particularly important, which can determine the safe state of the global structure. For this reason, the seismic performance of the truss steel reinforced concrete (SRC) beam-column frame joints is investigated by the experimental study and the nonlinear finite element modeling. The main design parameters include the section size of the web rods, the axial compression ratio and the section size of I-steel. The failure mechanism, load-displacement skeleton curve, the ductility and energy dissipation capacity, and shear deformation in the core zone of the truss SRC beam-column joints are studied. A formula is put forward to describe the shear bearing-capacity of the joints. The results indicate that the truss SRC beam-column frame joints generally have good seismic performance. The size of steel and web members have impact on the seismic performance of the truss SRC beam-column joints, and the axial compression ratio is an important factor that impacts the hysteresis behavior and energy dissipation. The proposed shear bearing-capacity formula can objectively reflect the performance of the joints.


2012 ◽  
Vol 204-208 ◽  
pp. 1066-1069
Author(s):  
Yan Jun Li ◽  
Ping Liu

Four specially shaped columns with HRB500 reinforcement were tested under low cyclic loading. The hysteretic curve, yield load, ultimate load, displacement ductility and rigidity degradation were compared in order to research the effect of axial compression ratio on ductility and bearing capacity of specially shaped column with HRB500 reinforcement. It is shown that the axial compression ratio has greater influence on ductility and bearing capacity. With the increase of axial compression ratio, the bearing capacity of HRB500 reinforcement concrete specially shaped column can be enhanced while the deformation capacity becomes worse. The hysteretic characteristic of specially shaped columns with HRB500 reinforcement is improved and the stiffness degeneration becomes slow with the decrease of axial compression ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dafu Cao ◽  
Jiaqi Liu ◽  
Wenjie Ge ◽  
Rui Qian

In order to study the influence of the axial compression ratio and steel ratio on the shear-carrying capacity of steel-truss-reinforced beam-column joints, five shear failure interior joint specimens were designed. The effect of different coaxial pressure ratios (0.1, 0.2, and 0.3) and steel contents on the strain, ultimate bearing capacity, seismic performance, and failure pattern of cross-inclined ventral and chord bars in the joint core area was investigated. The experimental results show that the load-displacement hysteretic curves of all test specimens exhibit a bond-slip phenomenon. With the increase of the axial compression ratio, the ultimate bearing capacity of the joint core increases by 3.4% and 5.9%, respectively. While the ductility decreases by 10.3% and 13.1%, and the energy consumption capacity decreases by 3.2% and 5.8%, respectively. The shear capacity and ductility of the member with cross diagonal ventral steel angle in the joint core are increased by 12.9% and 13.4%, respectively. The shear capacity and ductility of the joint can be significantly improved by increasing the amount of steel in the core area. The expression of shear capacity suitable for this type of joint is obtained by fitting analysis, which can be used as a reference for engineering design.


2011 ◽  
Vol 368-373 ◽  
pp. 248-252
Author(s):  
Bao Sheng Yang ◽  
Yun Yun Li

The influence on columns behaviors of slenderness ratio are analyzed, and the influence on columns’ anti-seismic behavior of axial compression ratio, stirrup ratio and steel form are analyzed through the test on bearing capacity and level load of low cycle reverse of steel reinforced high-strength concrete columns. The bearing capacity of the long columns reduces along with the slenderness ratio increasing and augments along with concrete strength increasing. Probability of suddenly destruct increases along with the column slenderness ratio augmenting through the test. In addition, anti-seismic behavior of columns are effected not only axial compression ratio, but also steel form. Axial compression coefficien of the steel reinforced high-strength concrete columns with different steel form may be adjusted, however, the influence of stirrup ratio is very little on anti-seismic behavior of columns.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Zhen-chao Teng ◽  
Tian-jia Zhao ◽  
Yu Liu

In traditional building construction, the structural columns restrict the design of the buildings and the layout of furniture, so the use of specially shaped columns came into being. The finite element model of a reinforced concrete framework using specially shaped columns was established by using the ABAQUS software. The effects of concrete strength, reinforcement ratio, and axial compression ratio on the seismic performance of the building incorporating such columns were studied. The numerical analysis was performed for a ten-frame structure with specially shaped columns under low reversed cyclic loading. The load-displacement curve, peak load, ductility coefficient, energy dissipation capacity, and stiffness degradation curve of the specially shaped column frame were obtained using the ABAQUS finite element software. The following three results were obtained from the investigation: First, when the strength of concrete in the specially shaped column frame structure was increased, the peak load increased, while the ductility and energy dissipation capacity weakened, which accelerated the stiffness degradation of the structure. Second, when the reinforcement ratio was increased in the specially shaped column frame structure, the peak load increased and the ductility and energy dissipation capacity also increased, which increased the stiffness of the structure. Third, when the axial compression ratio was increased in the structure, the peak load increased, while ductility and energy dissipation capacity reduced, which accelerated the degradation of structural stiffness.


2011 ◽  
Vol 243-249 ◽  
pp. 15-19 ◽  
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Jing Xu ◽  
Ye Ni Wang ◽  
Cui Ping Zhang

Compared with reinforced concrete shaped columns, bearing capacity and ductility of steel reinforced concrete shaped columns are significantly improved, so it is with theoretical significance and practical application of value to research. Based on the plain cross section presume, with material cross-section boundary calculation unit, 15 steel reinforced concrete cross-shaped columns(SRCCSC) have made nonlinear full-rang numerical analysis. It demonstrates that the most adverse curvature ductility load angle of SRCCRSC is 45°.Loading angle (), axial compression ratio (n), and the ratio of spacing and diameter of longitudinal reinforcements (s/d) are the principal factors in curvature ductility of SRCCSC subjected to biaxial eccentric compression. Under the most unfavorable loading angle, through a regression analysis of curvature ductility computer data of 150 cross-shaped columns with 8mm stirrups diameter and 150 columns with 10mm stirrups diameter, it can be obtained with the relationship betweenand axial compression ration,s/d, of SRCCSC subjected to biaxial eccentric compression.


Sign in / Sign up

Export Citation Format

Share Document