scholarly journals Human Adipose Mesenchymal Stem Cells Modulate Inflammation and Angiogenesis Through Exosomes

Author(s):  
June Seok Heo ◽  
Sinyoung Kim

Abstract Stem cell-derived exosomes are efficient and safe therapeutic tools for transferring endogenous biological cargo or functional biomolecules for regenerative medicine. The regulation of inflammation and angiogenesis plays a pivotal role in wound healing and tissue regeneration. The purpose of this study was to investigate the anti-inflammatory and pro-angiogenic roles of human adipose mesenchymal stem cell-derived exosomes, focusing on the underlying mechanisms. Exosomes inhibited LPS-induced inflammation by activating ROCK1 and PTEN expression. Moreover, microRNAs (miR-132 and miR-146a) released from exosomes upregulated the expression of pro-angiogenic genes and promoted proliferation activity and tube formation in human umbilical vein endothelial cells. Exosomal effects were verified using ROCK1/PTEN inhibitors for anti-inflammation and miR-132/miR-146a inhibitors for pro-angiogenesis. Our findings suggest that exosomes exert anti-inflammatory effects by targeting the ROCK1/PTEN pathway and exhibit pro-angiogenic effects via delivery of miR-132 and miR-146a. Taken together, these results suggest that exosomes may be promising therapeutic candidates for curing diseases involved in inflammation and angiogenesis.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zhimin Zhang ◽  
Congying Wei ◽  
Yanfen Zhou ◽  
Tao Yan ◽  
Zhengqiang Wang ◽  
...  

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dafeng Yang ◽  
Shenglan Tan ◽  
Zhousheng Yang ◽  
Pei Jiang ◽  
Caie Qin ◽  
...  

Accumulating studies demonstrate that dihydromyricetin (DMY), a compound extracted from Chinese traditional herb, Ampelopsis grossedentata, attenuates atherosclerotic process by improvement of endothelial dysfunction. However, the underlying mechanism remains poorly understood. Thus, the aim of this study is to investigate the potential mechanism behind the attenuating effects of DMY on tumor necrosis factor alpha- (TNF-α-) induced endothelial dysfunction. In response to TNF-α, microRNA-21 (miR-21) expression was significantly increased in human umbilical vein endothelial cells (HUVECs), in line with impaired endothelial dysfunction as evidenced by decreased tube formation and migration, endothelial nitric oxide synthase (eNOS) (ser1177) phosphorylation, dimethylarginine dimethylaminohydrolases 1 (DDAH1) expression and metabolic activity, and nitric oxide (NO) concentration as well as increased asymmetric dimethylarginine (ADMA) levels. In contrast, DMY or blockade of miR-21 expression ameliorated endothelial dysfunction in HUVECs treated with TNF-α through downregulation of miR-21 expression, whereas these effects were abolished by overexpression of miR-21. In addition, using a nonspecific NOS inhibitor, L-NAME, also abrogated the attenuating effects of DMY on endothelial dysfunction. Taken together, these data demonstrated that miR-21-mediated DDAH1/ADMA/NO signal pathway plays an important role in TNF-α-induced endothelial dysfunction, and DMY attenuated endothelial dysfunction induced by TNF-α in a miR-21-dependent manner.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Qiulian Zhou ◽  
Dongchao Lv ◽  
Qi Sun ◽  
Ping Chen ◽  
Yihua Bei ◽  
...  

Myocardial infarction (MI) is among major causes of morbidity and mortality associated with coronary artery disease. Angiogenesis improves tissue perfusion and cardiac repair after MI. Therefore, angiogenesis is considered to be a novel therapeutic way for ischemic heart diseases. MicroRNAs (miRNAs, miRs) have been reported to play important roles in regulating post-ischemic neovascularization. The current study aims at investigating the role of miR-4261 in angiogenesis. We found that miR-4261 mimics increased, while miR-4261 inhibitors decreased the proliferation of human umbilical vein endothelial cells (HUVEC) using EdU incorporation assay (17.25%±1.31% vs 30.91%±0.92% in nc-mimics vs mir-4261-mimics, 17.91%±1.36% vs 8.51%±0.82% in nc-inhibitor vs mir-4261-inhibitor, respectively) and CCK-8 assays (0.84±0.04 vs 1.38±0.04 in nc-mimics vs mir-4261-mimics, 0.80±0.02 vs 0.72±0.01 in nc-inhibitor vs mir-4261-inhibitor, respectively). The wound healing assay showed that miR-4261 mimic transfection resulted in a significant increase in the migration of HUVEC compared to that of the negative controls while miR-4261 inhibition had the opposite effects. Tube formation assays showed that HUVEC transfected with miR-4261 mimics increased the number of tubes formed (57.25±2.56 vs 81.5±2.53 in nc-mimics vs mir-4261-mimics, respectively), while miR-4261 inhibitor-transfected cells had the opposite effect (56.55±0.45 vs 41.38±0.52 in nc-inhibitor vs mir-4261-inhibitor, respectively). These results indicate that miR-4261 play an important role in regulating angiogenesis. However, it remains unknown which target gene mediated the effects of miR-4261. Thus, it will be of great interest to further investigate the molecular mechanisms of miR-4261 in the proliferation, migration, and tube formation of HUVEC in vitro. MiR-4261 could be a potential therapeutic target to enhance angiogenesis.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Satoshi Shintani ◽  
Yuuki Shimizu ◽  
Changning Hao ◽  
Kazuhisa Kondo ◽  
Ryo Hayashida ◽  
...  

Background: Recent studies indicate that macrophages (Mφ) have conflicting characteristics, pro-inflammatory or anti-inflammatory phenotypes. We previously demonstrated that implantation of adipose derived regenerative cells (ADRCs) augmented angiogenesis and lymph angiogenesis by modulating Mφ phenotype in animal models. We thus examine whether Mφ polarization to M2 type is important for neovascularization in various models. Methods and Results: Culture medium of ADRCs accelerated not only migration of human umbilical vein endothelial cells (HUVECs) but also polarization of M2 type Mφ. Cultured ADRCs released SDF-1, VEGF-C, and prostaglandin E2 (PGE2). PGE2 plays a key role for the polarization of M2 type Mφ via EP2/4 receptors. Matrigel tube formation assay conformed that ADRCs were incorporated into HUVEC network. In vivo, implanted ADRCs participated in the formation of capillary networks in ischemic tissue. In a mice model of tail lymphedema, the number of bone marrow derived Mφ was significantly higher in the ADRCs treated group than in the un-treated group. Most of Mφ differentiated into lymphatic endothelial cell in the edematous tissue and were polarized to M2 phenotype. Moreover, in a mice model of hind limb ischemia, implantation of ADRCs facilitated the polarization of Mφ into M2 type Mφ and up regulated IL-10 expression to suppress inflammation at ischemic tissue. Conclusion: Polarization into anti-inflammatory phenotype of Mφ plays an important role for regenerative action of ADRCs.


Sign in / Sign up

Export Citation Format

Share Document