scholarly journals Tissue Paper-based Composite Separator Using Nano-SiO2 Hybrid Crosslinked Polymer Electrolyte as Coating Layer For Lithium Ion Battery With Superior Security and Cycle Stability

Author(s):  
Xinyu Zeng ◽  
Yu Liu ◽  
Rulei He ◽  
Tongyuan Li ◽  
Yuqin Hu ◽  
...  

Abstract With the development of energy-storage devices, separator is encountered by several challenges including adequate safety, higher current density and superior stability. Tissue paper, composed of packed cellulose fibers, possesses lower production cost, more easily accessibility, superior wettability and outstanding thermostability, thus being prospective as a substrate of high performance separator. To address structure collapse phenomenon occurred in conventional coating layer after long term electrolyte swelling, nano-SiO2 hybrid crosslinked network was constructed on tissue paper through chemical reactions between polymer poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and hyperbranched polyethyleneimine (PEI) in this work. The influences of crosslinking degree on physical properties and electrochemical performance were studied thoroughly. It can be found that when the crosslinking ratio of PVDF-HFP and PEI fixed at 10:1, the crosslinked composite separator displays excellent electrolyte uptake and wettability, superior ionic conductivity, better interfacial compatibility as well as higher Li+ transference number (0.56), thus offering battery with prominent rate capabilities. Besides, this crosslinked composite separator exhibits satisfying dimensional stability even treated at 250 oC, better flame retardancy, enhanced mechanical behavior, wider electrochemical window and outstanding cycle stability. Accordingly, tissue paper-based crosslinked composite separator can meet higher requirements put forward by high power lithium ion battery.

2021 ◽  
Vol 867 ◽  
pp. 159079
Author(s):  
Wenchao Liu ◽  
Feng Gao ◽  
Yunhao Zang ◽  
Jiangying Qu ◽  
Jin Xu ◽  
...  

2016 ◽  
Vol 09 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Yongli Cui ◽  
Jiali Wang ◽  
Mingzhen Wang ◽  
Quanchao Zhuang

Shell spinel LiNi[Formula: see text]Mn[Formula: see text]O4 hollow microspheres were successfully synthesized by MnCO3 template, and characterized by XRD, SEM, and TEM. The results show that the hollow LiNi[Formula: see text]Mn[Formula: see text]O4 cathode has good cycle stability to reach 124.5, 119.8, and 96.6[Formula: see text]mAh/g at 0.5, 1, and 5 C, the corresponding retention rate of 98.1%, 98.2%, and 98.0% after 50 cycles at 20[Formula: see text]C, and the reversible capacity of 94.6[Formula: see text]mAh/g can be obtained at 1 C rate at 55[Formula: see text]C, 83.3% retention after 100 cycles. As the temperature decreases from 10[Formula: see text]C to [Formula: see text]C, the resistance of [Formula: see text] increases from 5.5 [Formula: see text] to 135 [Formula: see text], [Formula: see text] from 27 [Formula: see text] to 353.2 [Formula: see text], and [Formula: see text] from 12.7 [Formula: see text] to 73.0 [Formula: see text]. Moreover, the B constant and [Formula: see text] activation energy are 4480[Formula: see text]K and 37.22[Formula: see text]KJ/mol for the NTC spinel material, respectively.


2021 ◽  
Author(s):  
Feiran Chen ◽  
Zheng Liu ◽  
Nan Yu ◽  
Hongxia Sun ◽  
Baoyou Geng

In this work, silica nanospheres were introduced into nitrogen-carbon (NC) coated MnO microspheres and filled between the NC and MnO. After etching, an interspace was formed between the coating layer...


Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 78 ◽  
Author(s):  
Muhammad Rehman Asghar ◽  
Muhammad Tuoqeer Anwar ◽  
Ahmad Naveed ◽  
Junliang Zhang

Separators with high porosity, mechanical robustness, high ion conductivity, thin structure, excellent thermal stability, high electrolyte uptake and high retention capacity is today’s burning research topic. These characteristics are not easily achieved by using single polymer separators. Inorganic nanoparticle use is one of the efforts to achieve these attributes and it has taken its place in recent research. The inorganic nanoparticles not only improve the physical characteristics of the separator but also keep it from dendrite problems, which enhance its shelf life. In this article, use of inorganic particles for lithium-ion battery membrane modification is discussed in detail and composite membranes with three main types including inorganic particle-coated composite membranes, inorganic particle-filled composite membranes and inorganic particle-filled non-woven mates are described. The possible advantages of inorganic particles application on membrane morphology, different techniques and modification methods for improving particle performance in the composite membrane, future prospects and better applications of ceramic nanoparticles and improvements in these composite membranes are also highlighted. In short, the contents of this review provide a fruitful source for further study and the development of new lithium-ion battery membranes with improved mechanical stability, chemical inertness and better electrochemical properties.


2021 ◽  
Vol 311 ◽  
pp. 110724
Author(s):  
Qingshan Fu ◽  
Wei Zhang ◽  
Ismail Pir Muhammad ◽  
Xuedan Chen ◽  
Yue Zeng ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 868 ◽  
Author(s):  
Huali Zhu ◽  
Rui Shen ◽  
Yiwei Tang ◽  
Xiaoyan Yan ◽  
Jun Liu ◽  
...  

Nickel-rich layered LiNi1−x−yCoxMnyO2 (LiMO2) is widely investigated as a promising cathode material for advanced lithium-ion batteries used in electric vehicles, and a much higher energy density in higher cut-off voltage is emergent for long driving range. However, during extensive cycling when charged to higher voltage, the battery exhibits severe capacity fading and obvious structural collapse, which leads to poor cycle stability. Herein, Sn-doping and in situ formed Li2SnO3 nano-coating layer co-modified spherical-like LiNi0.5Co0.2Mn0.3O2 samples were successfully prepared using a facile molten salt method and demonstrated excellent cyclic properties and high-rate capabilities. The transition metal site was expected to be substituted by Sn in this study. The original crystal structures of the layered materials were influenced by Sn-doping. Sn not only entered into the crystal lattice of LiNi0.5Co0.2Mn0.3O2, but also formed Li+-conductive Li2SnO3 on the surface. Sn-doping and Li2SnO3 coating layer co-modification are helpful to optimize the ratio of Ni2+ and Ni3+, and to improve the conductivity of the cathode. The reversible capacity and rate capability of the cathode are improved by Sn-modification. The 3 mol% Sn-modified LiNi0.5Co0.2Mn0.3O2 sample maintained the reversible capacity of 146.8 mAh g−1 at 5C, corresponding to 75.8% of its low-rate capacity (0.1C, 193.7mAh g−1) and kept the reversible capacity of 157.3 mAh g−1 with 88.4% capacity retention after 100 charge and discharge cycles at 1C rate between 2.7 and 4.6 V, showing the improved electrochemical property.


Sign in / Sign up

Export Citation Format

Share Document