scholarly journals Mammalian HEMK1 Methylates Glutamine Residue of the GGQ Motif of Mitochondrial Release Factors

Author(s):  
Qi Fang ◽  
Yusuke Kimura ◽  
Tadahiro Shimazu ◽  
Takehiro Suzuki ◽  
Naoshi Dohmae ◽  
...  

Abstract Despite limited reports on glutamine methylation, methylated glutamine is found to be highly conserved in a "GGQ" motif in both prokaryotes and eukaryotes. In bacteria, glutamine methylation of peptide chain release factors 1/2 (RF1/2) by the enzyme PrmC is essential for translational termination and transcript recycling. Two PrmC homologs, HEMK1 and HEMK2, are found in mammals. In contrast to those of HEMK2, the biochemical properties and biological significance of HEMK1 remain largely unknown. In this study, we demonstrated that HEMK1 is an active methyltransferase for the glutamine residue of the GGQ motif of all four putative mitochondrial release factors (mtRFs)—MTRF1, MTRF1L, MRPL58, and MTRFR. In HEMK1-deficient HeLa cells, GGQ motif glutamine methylation was absent in all the mtRFs. We examined cell growth and mitochondrial properties, but disruption of the HEMK1 gene had no considerable impact on the overall cell growth, mtDNA copy number, and mitochondrial membrane potential. Furthermore, mitochondrial protein synthesis was not affected in HEMK1 KO cells. Our results suggest that HEMK1 mediates the GGQ methylation of all four mtRFs in human cells; however, this specific modification seems mostly dispensable in cell growth and mitochondrial protein homeostasis under standard culture conditions.

Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 643-652 ◽  
Author(s):  
W J Mackay ◽  
G C Bewley

Abstract Activated oxygen species have been demonstrated to be the important agents in oxygen toxicity by disrupting the structural and functional integrity of cells through lipid peroxidation events, DNA damage and protein inactivation. The biological consequences of free radical damage have long been hypothesized to be a causal agent in many aging-related diseases. Catalase (H2O2:H2O2 oxidoreductase; EC 1.15.1.1) is one of several enzymes involved in the scavenging of oxygen free radicals and free radical derivatives. The structural gene for catalase in Drosophila melanogaster has been localized to region 75D1-76A on chromosome 3L by dosage responses to segmental aneuploidy. This study reports the isolation of a stable deficiency, Df(3L)CatDH104(75C1-2;75F1), that uncovers the catalase locus and the subsequent isolation of six acatalasemic mutants. All catalase mutants are viable under standard culture conditions and recessive lethal mutations within the 75Cl-F1 interval have been shown not to affect catalase activity. Two catalase mutations are amorphic while four are hypomorphic alleles of the Cat+ locus. The lack of intergenic complementation between the six catalase mutations strongly suggests that there is only one functional gene in Drosophila. One acatalesemic mutation was mapped to position 3-47.0 which resides within the catalase dosage sensitive region. While complete loss of catalase activity confers a severe viability effect, residual levels are sufficient to restore viability to wild type levels. These results suggest a threshold effect for viability and offer an explanation for the general lack of phenotypic effects associated with the known mammalian acatalasemics.


2021 ◽  
pp. 185-190
Author(s):  
I.V. Mitrofanova ◽  
V.A. Brailko ◽  
N.P. Lesnikova-Sedoshenko ◽  
N.N. Ivanova ◽  
O.V. Mitrofanova

2001 ◽  
Vol 67 (8) ◽  
pp. 3650-3654 ◽  
Author(s):  
Chan B. Park ◽  
Sun Bok Lee ◽  
Dewey D. Y. Ryu

ABSTRACT Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues ofl-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues,N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density.


2006 ◽  
Vol 38 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Georg BRUNAUER ◽  
Armin HAGER ◽  
Wolf Dietrich KRAUTGARTNER ◽  
Roman TÜRK ◽  
Elfie STOCKER-WÖRGÖTTER

Culture experiments that trigger the axenically grown mycobionts of Lecanora rupicola to produce the polyketide chemosyndrome typical of the naturally grown lichen are reported. This chemosyndrome comprises lecanoric, haematommic and orsellinic acids, sordidone, eugenitol and atranorin, all of which were hardly produced under standard culture conditions. The only exception was arthothelin that was only present in the voucher specimen. It has been shown that almost the complete acetyl-polymalonyl-pathway leading to depsides and chromones can be induced in culture, but apparently not the xanthones. The mycobiont was also successfully re-synthesized with its original photobiont, as confirmed by Scanning Electron Microscope studies (SEM). Cultures of the resynthesised lichen biosynthesized additional satellite substances, which were not detected either in the voucher specimens or in the aposymbiontically (without the photobiont) grown mycobiont cultures. The identity of cultured mycobionts of L. rupicola was confirmed by comparing ITS-DNA-sequence data from the original lichen with publicly available (GeneBank) sequences of that species.


2020 ◽  
Author(s):  
Zuriñe Antón ◽  
Grace Mullally ◽  
Holly Ford ◽  
Marc W. van der Kamp ◽  
Mark D. Szczelkun ◽  
...  

ABSTRACTCurrent methodologies for targeting the mitochondrial genome for basic research and/or therapeutic strategy development in mitochondrial diseases are restricted by practical limitations and technical inflexibility. The development of a functional molecular toolbox for CRISPR-mediated mitochondrial genome editing is therefore desirable, as this could enable precise targeting of mtDNA haplotypes using the precision and tuneability of CRISPR enzymes; however, published reports of “MitoCRISPR” systems have, to date, lacked reproducibility and independent corroboration. Here, we have explored the requirements for a functional MitoCRISPR system in human cells by engineering several versions of CRISPR nucleases, including the use of alternative mitochondrial protein targeting sequences and smaller paralogues, and the application of gRNA modifications that reportedly induce mitochondrial import. We demonstrate varied mitochondrial targeting efficiencies and influences on mitochondrial dynamics/function of different CRISPR nucleases, with Lachnospiraceae bacterium ND2006 (Lb) Cas12a being better targeted and tolerated than Cas9 variants. We also provide evidence of Cas9 gRNA association with mitochondria in HeLa cells and isolated yeast mitochondria, even in the absence of a targeting RNA aptamer. Finally, we present evidence linking mitochondrial-targeted LbCas12a/crRNA with increased mtDNA copy number dependent upon DNA binding and cleavage activity. We discuss reproducibility issues and the future steps necessary if MitoCRISPR is to be realised.


2021 ◽  
Author(s):  
Caroline Trumpff ◽  
Edward Owusu-Ansah ◽  
Hans-Ulrich Klein ◽  
Annie Lee ◽  
Vladislav Petyuk ◽  
...  

Mitochondrial respiratory chain (RC) function requires the stochiometric interaction among dozens of proteins but their co-regulation has not been defined in the human brain. Here, using quantitative proteomics across three independent cohorts we systematically characterized the co-regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex (DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. Alzheimer disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide foundational knowledge to identify molecular mechanisms contributing to age- and disease-related erosion of mitochondrial function in the human brain.


2017 ◽  
Vol 8 (4) ◽  
pp. 403-410 ◽  
Author(s):  
S. K. Feuer ◽  
P. F. Rinaudo

Approximately 1–4% of children today are conceived using assisted reproductive technologies (ARTs), includingin vitrofertilization (IVF). IVF is considered safe and the great majority of these children are healthy, yet there is increasing physiological and molecular evidence from animal models that ART is associated with postnatal metabolic and cardiovascular alterations. Understanding the mechanisms underlying these changes and determining whether they have biological significance is of paramount importance for optimizing the design of culture conditions and improving the health of ART children across the life course. In this review, we examine the evidence of molecular changes present in adult tissues of rodent offspring generated by preimplantation manipulation of gametes and embryos. Although embryo manipulationin vitrocan induce common transcriptional effects in the blastocyst, transcriptional and metabolomic signatures in adult IVF tissues are largely tissue-specific. However, there is pervasive evidence of oxidative stress and metabolic dysfunction, indicating a lasting effect of IVF on molecular physiology.


2019 ◽  
Vol 31 (3) ◽  
pp. 570 ◽  
Author(s):  
W. Karin Hendriks ◽  
Silvia Colleoni ◽  
Cesare Galli ◽  
Damien B. B. P. Paris ◽  
Ben Colenbrander ◽  
...  

Intracytoplasmic sperm injection is the technique of choice for equine IVF and, in a research setting, 18–36% of injected oocytes develop to blastocysts. However, blastocyst development in clinical programs is lower, presumably due to a combination of variable oocyte quality (e.g. from old mares), suboptimal culture conditions and marginal fertility of some stallions. Furthermore, mitochondrial constitution appears to be critical to developmental competence, and both maternal aging and invitro embryo production (IVEP) negatively affect mitochondrial number and function in murine and bovine embryos. The present study examined the onset of mitochondrial (mt) DNA replication in equine embryos and investigated whether IVEP affects the timing of this important event, or the expression of genes required for mtDNA replication (i.e. mitochondrial transcription factor (TFAM), mtDNA polymerase γ subunit B (mtPOLB) and single-stranded DNA binding protein (SSB)). We also investigated whether developmental arrest was associated with low mtDNA copy number. mtDNA copy number increased (P<0.01) between the early and expanded blastocyst stages both invivo and invitro, whereas the mtDNA:total DNA ratio was higher in invitro-produced embryos (P=0.041). Mitochondrial replication was preceded by an increase in TFAM but, unexpectedly, not mtPOLB or SSB expression. There was no association between embryonic arrest and lower mtDNA copy numbers.


Sign in / Sign up

Export Citation Format

Share Document