scholarly journals The Fire Resistance Performance of Concrete Columns With Different Compressive Strength

Author(s):  
Rafid Saeed Atea

Abstract Four full concrete columns have been created Tested below high temperature for The fire resistance of concrete elements in concrete with particular compressive strengths. The standard concrete with compressive strength values of C25 were made of one of the four specimens, while the rest were made of C35, C60 and C75 respectively, respectively. During simulation of Within the laboratory furnace, the same For the specimens, axial forces were applied. Many experimental outcomes parameters were evaluated in contrast, including temperature changes, Vertical moving, side deflection, fire resistance and Failed properties of the specimen. The results have shown a rise in the compressive strength of the concrete for the concrete columns from the outside up to the inside of the column the same cross section of the lower compressive forces of concrete display better fire resistance efficiency with the same initial axial strength ratio. The C35, C60 and C75 columns' fire resistance is higher than standard concrete columns. The initial and secant rigidity of the columns of Reinforced concrete (RC) has also The percentage decreased dramatically after fire exposure and the temperature increased from 25 to 750 ° C.

2021 ◽  
Author(s):  
Rafid Saeed Atea

Abstract Four full concrete columns have been created Tested below high temperature for The fire resistance of concrete elements in concrete with particular compressive strengths. The standard concrete with compressive strength values of C25 were made of one of the four specimens, while the rest were made of C35, C60 and C75 respectively, respectively. During simulation of Within the laboratory furnace, the same For the specimens, axial forces were applied. Many experimental outcomes parameters were evaluated in contrast, including temperature changes, Vertical moving, side deflection, fire resistance and Failed properties of the specimen. The results have shown a rise in the compressive strength of the concrete for the concrete columns from the outside up to the inside of the column. Of columns of the the same cross section of the lower compressive forces of concrete display better fire resistance efficiency with the same initial axial strength ratio. The C35, C60 and C75 columns' fire resistance is higher than standard concrete columns. The initial and secant rigidity of the columns of Reinforced concrete ( RC) has also The percentage decreased dramatically after fire exposure and the temperature increased from 25 to 750 ° C.


Author(s):  
Yevhen Dmytrenko ◽  
Taras Donets ◽  
Kateryna Odnolitok ◽  
Oleg Fesenko

This paper contains the results of fire resistance calculation of reinforced concrete columns with advanced calculation methods. For columns that are tested unloaded, determine the cross-sectional temperature distribution and values of temperature in reinforcement. The fire resistance of columns that have been tested without load is determined according to temperature measurements, with calculation methods according to the requirements of DBN B.1.1-7 andDBN B.1.2-7. According to the tabulated method, the fire resistance of reinforced concrete columns is determined by geometric parameters such as cross-section width, axis distance of the reinforcement, amount of reinforcement, length or height of the element, load level during the fire exposure, heating conditions during the fire exposure (number of fire exposed sides). Accidental combination of actions during the fire situation consists of characteristic values of permanent and variable long-term actions taking into account the safety factor  for the consequence class of the object (CC2) and the type of design situation (accidental). Thermal analysis of the column was performed under conditions of the standard fire exposure. In such conditions it was assumed that the column is exposed to fire with four sides for 120 minutes that corresponds to the required fire resistance class R120. The thermal state of the column was determined using transient thermal models that take into account radiation-convective heat transfer in the ambient from the heat source to the structural surface, convective heat transfer in the structure, radiation-convective heat exchange from the structure to the ambient environment. The residual load-bearing capacity of the reinforced concrete column after the fire exposure was calculated with the reduced cross-section determined using zone method in accordance with the requirements of DSTU-N B B.2.6-197 and DSTU-N B EN 1992-1-2. The fire resistance period of columns for the load-bearing criterion was determined on the basis of the results of of thermal and static analysis.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2020 ◽  
Vol 11 (4) ◽  
pp. 529-543
Author(s):  
Anjaly Nair ◽  
Osama (Sam) Salem

Purpose At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations. Design/methodology/approach To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column. Findings Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration. Originality/value According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.


2014 ◽  
Vol 905 ◽  
pp. 268-272
Author(s):  
In Hwan Yeo ◽  
Bum Yean Cho ◽  
Jae Hong An ◽  
Byung Youl Min

Since the column members in buildings deal with both vertical and horizontal loads, appropriated amount of load should be estimated in order to evaluate the fire resistance performance of the columns under loaded condition. However, according to the ISO 834, the international standard for the evaluation of structural members, the fire resistance performance evaluation of column members is only based on the displacement and displacement rate under loaded condition in a standard fire. The purpose of this study is to suggest appropriate axial load ratios for the evaluation of fire resistance performance. The test conducted in this study produced appropriate axial load ratios for different slenderness ratios. They are expected to contribute to more accurate estimation of fire resistance performance and more efficient and cost-effective structural design.


Sign in / Sign up

Export Citation Format

Share Document