Optimization of Different Fitness Functions Using Reproduction, Crossover and Mutation of Genetic Algorithm With Binary Number Scheduling

Author(s):  
J PRINCE JEROME CHRISTOPHER ◽  
K LINGADURAI ◽  
G SHANKAR

Abstract Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics. In this paper, we investigate a novel approach to the binary coded testing process based on a genetic algorithm. This paper consists of two parts. Thefirst part addresses the problem in the traditional way of using the decimal number system to define the fitness function to study the variations of counts and the variations of probability against the fitness functions. Second, the initialpopulationsare defined using binary coded digits (genes). For the evaluation of the high fitness function values,three genetic operators, namely, reproduction, crossover and mutation, are randomly used. The results show the importance of the genetic operator, mutation, which yields the peak values for the fitness function based on binary coded numbers performed in a new way.

Author(s):  
Javier Trejos ◽  
Mario A. Villalobos-Arias ◽  
Jose Luis Espinoza

In this article it is studied the application of a genetic algorithm in the problem of variable selection for multiple linear regression, minimizing the least squares criterion. The algorithm is based on a chromosomic representation of variables that are considered in the least squares model. A binary chromosome indicates the presence (1) or absence (0) of a variable in the model. The fitness function is based on the adjusted square R, proportional to the fitness for chromosome selection in a roulette wheel model selection. Usual genetic operators, such as crossover and mutation are implemented. Comparisons are performed with benchmark data sets, obtaining satisfying and promising results.


2015 ◽  
Vol 764-765 ◽  
pp. 444-447
Author(s):  
Keun Hong Chae ◽  
Hua Ping Liu ◽  
Seok Ho Yoon

In this paper, we propose a multiple objective fitness function for cognitive engines by using the genetic algorithm (GA). Specifically, we propose four single objective fitness functions, and finally, we propose a multiple objective fitness function based on the single objective fitness functions for transmission parameter optimization. Numerical results demonstrate that we can obtain transmission parameter sets optimized for given transmission scenarios with the GA-based cognitive engine incorporating the proposed objective fitness function.


Author(s):  
Santosh Tiwari ◽  
Joshua Summers ◽  
Georges Fadel

A novel approach using a genetic algorithm is presented for extracting globally satisfycing (Pareto optimal) solutions from a morphological chart where the evaluation and combination of “means to sub-functions” is modeled as a combinatorial multi-objective optimization problem. A fast and robust genetic algorithm is developed to solve the resulting optimization problem. Customized crossover and mutation operators specifically tailored to solve the combinatorial optimization problem are discussed. A proof-of-concept simulation on a practical design problem is presented. The described genetic algorithm incorporates features to prevent redundant evaluation of identical solutions and a method for handling of the compatibility matrix (feasible/infeasible combinations) and addressing desirable/undesirable combinations. The proposed approach is limited by its reliance on the quantifiable metrics for evaluating the objectives and the existence of a mathematical representation of the combined solutions. The optimization framework is designed to be a scalable and flexible procedure which can be easily modified to accommodate a wide variety of design methods that are based on the morphological chart.


2017 ◽  
Vol 44 (11) ◽  
pp. 945-955 ◽  
Author(s):  
Mansour Fakhri ◽  
Ershad Amoosoltani ◽  
Mona Farhani ◽  
Amin Ahmadi

The present study investigates the effectiveness of evolutionary algorithms such as genetic algorithm (GA) evolved neural network in estimating roller compacted concrete pavement (RCCP) characteristics including flexural and compressive strength of RCC and also energy absorbency of mixes with different compositions. A real coded GA was implemented as training algorithm of feed forward neural network to simulate the models. The genetic operators were carefully selected to optimize the neural network, avoiding premature convergence and permutation problems. To evaluate the performance of the genetic algorithm neural network model, Nash-Sutcliffe efficiency criterion was employed and also utilized as fitness function for genetic algorithm which is a different approach for fitting in this area. The results showed that the GA-based neural network model gives a superior modeling. The well-trained neural network can be used as a useful tool for modeling RCC specifications.


Author(s):  
Imbaby I. Mahmoud ◽  
May Salama ◽  
Asmaa Abd El Tawab Abd El Hamid

The aim of this chapter is to investigate the hardware (H/W) implementation of Genetic Algorithm (GA) based motion path planning of robot. The potential benefit of using H/W implementation of genetic algorithm is that it allows the use of huge parallelism which is suited to random number generation, crossover, mutation and fitness evaluation. The operation of selection and reproduction are basically problem independent and involve basic string manipulation tasks. The fitness evaluation task, which is problem dependent, however proves a major difficulty in H/W implementation. Another difficulty comes from that designs can only be used for the individual problem their fitness function represents. Therefore, in this work the genetic operators are implemented in H/W, while the fitness evaluation module is implemented in software (S/W). This allows a mixed hardware/software approach to address both generality and acceleration. Moreover, a simple H/W implementation for fitness evaluation of robot motion path planning problem is discussed.


Author(s):  
David R. Nielsen ◽  
Kazem Kazerounian

Abstract A procedure is developed to optimize planar mechanism type. A Genetic Algorithm is used to cycle populations of kinematic chain link adjacency matrices, through selection, crossover, and mutation. During this optimization, fit kinematic chains survive while unfit kinematic chains do not. Upon convergence, synthesized kinematic chains of high fitness remain. This technique was lead to be called the Genetic Algorithm for Type Synthesis (GATS). GATS introduces four new ideas for the type synthesis of mechanisms. First, it does not permute all possible kinematic chains. It searches for the best kinematic chains depending on a designer’s specifications. Second, larger size mechanisms can be generated because of the genetic algorithm’s evolutionary naturalness. Third, a novel approach was applied to genetic algorithms to allow the encodings to mutate in size. This allowed for addition or elimination of links in kinematic chains during evolution. Forth, a new property was deduced from mechanism topography that describes the mechanism design flexibility.


2019 ◽  
Vol 28 (2) ◽  
pp. 333-346 ◽  
Author(s):  
Shelza Suri ◽  
Ritu Vijay

Abstract The paper implements and optimizes the performance of a currently proposed chaos-deoxyribonucleic acid (DNA)-based hybrid approach to encrypt images using a bi-objective genetic algorithm (GA) optimization. Image encryption is a multi-objective problem. Optimizing the same using one fitness function may not be a good choice, as it can result in different outcomes concerning other fitness functions. The proposed work initially encrypts the given image using chaotic function and DNA masks. Further, GA uses two fitness functions – entropy with correlation coefficient (CC), entropy with unified average changing intensity (UACI), and entropy with number of pixel change rate (NPCR) – simultaneously to optimize the encrypted data in the second stage. The bi-objective optimization using entropy with CC shows significant performance gain over the single-objective GA optimization for image encryption.


2014 ◽  
Vol 977 ◽  
pp. 25-29
Author(s):  
Bing Xiang Liu ◽  
Feng Qin Wang ◽  
Xu Dong Wu ◽  
Ying Xi Li

In order to improve the reliability of cracks in ceramics test, this paper puts forward a target adaptive segmentation method used by genetic algorithm and maximum-variance algorithm in all classes. This proposed method makes some appropriate improvements about crossover and mutation in genetic algorithm. Besides, the fitness function draws merits of maximum-variance algorithm in all classes and turns the best value in image segmentation into corresponding optimization problem. The simulation results of experiment shows the method proposed shortens the searching time and strengthens anti-noise property during image segmentation and improves recognition rate of cracks in ceramics.


CONVERTER ◽  
2021 ◽  
pp. 169-190
Author(s):  
Baishang Zhang, Et al.

Energy manufacture is very important to all of industries. Typhoons hit the power grid in China's southeast coastal areas frequently for the past few years, seriously affecting the industries’ operation. Therefore, making-decision of wind damage management for nation's electricity grid in real time is an urgent subject to be studied. The traditional decision making method is easy to be implemented, but is not proper for dealing with nonlinear problems in complex systems. The purpose of this article is to design a fast decision making framework for accomplishing fast decision making by making combination Case-Based Reasoning (CBR) with Rule-Based Reasoning (RBR), Genetic Algorithm (GA), which is called fast decision making method based on integrated intelligent technologies (FDMMBIIT). Compared with traditional methods, FDMMBIIT completes case adaptation with BPNN after extending case base. To make the decision-making more accurate, this article updated the multi-object genetic algorithm (MOGA) with adaptive genetic operators and a selection method by using the fitness function. Likewise, BPNN is improved with adaptive simulated annealing algorithm (ASAA), which is named as BPNNASAA. More important, this paper expands the frame theory by integrating it to the D/S evidence theory, exploring a novel solution to representing cases with incomplete information. The case of Guangdong demonstrates FDMMBIIT achieves better decision-making performance for storm disaster emergency management.


Author(s):  
Riyadh Bassil Abduljabbar ◽  
Oday Kamil Hamid ◽  
Nazar Jabbar Alhyani

The data communication has been growing in present day. Therefore, the data encryption became very essential in secured data transmission and storage and protecting data contents from intruder and unauthorized persons. In this paper, a fast technique for text encryption depending on genetic algorithm is presented. The encryption approach is achieved by the genetic operators Crossover and mutation. The encryption proposal technique based on dividing the plain text characters into pairs, and applying the crossover operation between them, followed by the mutation operation to get the encrypted text. The experimental results show that the proposal provides an important improvement in encryption rate with comparatively high-speed Processing.


Sign in / Sign up

Export Citation Format

Share Document