scholarly journals Synthesis, Antibacterial Evaluation and in Silico Study of DOTA-fluoroquinolone Derivativessynthesis, Antibacterial Evaluation and in Silico Study of DOTA-fluoroquinolone Derivatives

Author(s):  
Weitian Li ◽  
Ge Hong ◽  
Lina Mao ◽  
Zengping Xu ◽  
Jiawen Wang ◽  
...  

Abstract A series of water-soluble fluoroquinolones based upon DOTA modification were synthesized and characterized by NMR and HRMS spectra. All the newly prepared quinolones compounds exhibited potent antimicrobial activities against MRSA, P. aeruginosa and E. coli. Molecular docking study indicated they could form stable complex with DNA gyrase and topoisomerase IV-DNA respectively, ADMET prediction showed they were low toxicity to the mice as whole. Among them, water-soluble quinolone 4c exhibited promising antibacterial potency, its MIC, MBC value for MRSA and P. aeruginosa was (1.56, 6.25) µg/mL, (3.1, 12.5) µg/mL respectively. Atomic Force Microscope (AFM) imaging revealed 4c could effectively destroy MRSA bacterial membrane and wall, causing its contents to leak out. Cytotoxicity assay showed 4c had low toxicity to L-02, A549 and MCF-7, over 80% cell viability even at 100 µmol/L. These results showed that water-soluble compound 4c was a promising antibacterial candidate.

2021 ◽  
Vol 25 (7) ◽  
pp. 167-176
Author(s):  
Cláudia Laís Araújo Almeida Santos ◽  
Jonh Anderson Macêdo Santos ◽  
Rodrigo Ribeiro Alves Caiana ◽  
Silvia Maria Souza ◽  
Jucleiton José Rufino Freitas ◽  
...  

The development of chemotherapy agents without side effects is a major challenge, since traditional medicines usually have undesirable properties such as high toxicity, resistance and low bioavailability. In this sense, computational methods play a crucial role in the discovery and optimization of new drugs, as they combine speed and efficiency with low cost. The 1,2,4-oxadiazoles are one of the main classes of heterocyclics due to their numerous biological applications. In this work, we report the synthesis, antineoplastic evaluation and in silico study of a new 1,2,4-oxadiazole. The (S)-N-(1-hydroxy-3-methylbutan-2-yl)-3-(p-toluyl)-1,2,4-oxadiazole-5-carboxamide was obtained after two reaction steps in excellent yield. Although it has shown low activity in relation to the MCF-7, HCT116 and HL60 tumor cell lines, the molecular docking study indicates that this compound acts in the colchicine site and can inhibit tubulin polymerization. From the calculation of pharmacokinetic properties by the SwissADME and Osiris Property Explorer programs, it is possible to infer that the compound meets the Lipinski rules presenting good oral bioavailability and low toxicity.


Author(s):  
Jeremiah I. Ogah ◽  
Olatunji M. Kolawole ◽  
Steven O. Oguntoye ◽  
Muhammed Mustapha Suleiman

The rise in the incidence of cervical cancer globally has accentuate attention to the potential role of polyphenols as anticancer agents. Different studies have demonstrated the role of some polyphenols in altering Human Papillomavirus (HPV) carcinogenesis. Thus, this study was aimed at establishing the potentials of Schiff-based polyphenols from imesatin and satin as anticancer agents through in silico analysis. The polyphenols were synthesized and characterized using elemental analyses, spectroscopic analyses, UV-visible, Infrared, and Nuclear Magnetic Resonance (1H NMR and 13C, NMR). Molecular docking study of the polyphenols was carried out using Auto Dock Vina. The oncogenic E6 protein structure of HPV 16 was obtained from the protein bank (ID: 4XR8). The E6 proteins were prepared using AutoDock tools. Water molecules were removed from the protein molecules while hydrogen atoms were added. Also, the structures of Curcumin and Isomericitrin were obtained from PubChem. Results showed that three different Schiff based polyphenols were obtained from the synthesis; 3-(2’,4’-dimethoxy benzylidene hydrazono) indoline-2-one (DMBH), 3-(2’-hydroxy-4’-methoxy benzylidene hydrazono) indoline-2-one (HMBD), and 3-((4-4’-((2’’, 4’’-dimethoxy benzylidene amino) benzyl)phenyl)imino) indoline-2-one (DMBP). Higher ability of the docked polyphenols to bind to the E6/E6AP/p53 complex when compared to Curcumin was revealed. Also, results showed that the binding energy of Curcumin and Isomericitrin were -7.1kcal/mol and -8.4kcal/mol respectively while that of the polyphenols ranged from -7.4kcal/mol to -7.9kcal/mol. The molecular docking results of the polyphenols used in this study further confirm their potentials as strong anti-cancer agents.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Chandan Sarkar ◽  
Sarmin Jamaddar ◽  
Milon Mondal ◽  
Abul Bashar Ripon Khalipha ◽  
Muhammad Torequl Islam ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) is a life threatening viral infection caused by a positivestrand RNA virus belonging to Coronaviridae family called severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2). This virus has infected millions of peoples, and caused hundreds of thousands of deaths around the world. Unfortunately, to date, there is no specific cure for SARS-CoV-2 infection, although researchers are working tirelessly to come up with a drug against this virus. Recently, the main viral protease has been discovered, and is regarded as an appropriate target for antiviral agents in the search for treatment of SARS-CoV-2 infection, due to its role in polyproteins processing during coronavirus replication. Methodology: This investigation (an in silico study) explores the effectiveness of 16 natural compounds from a literature survey against the protease of SARS-CoV-2 in an attempt to identify a promising antiviral agent through a molecular docking study. Results: Among the 16 compounds studied, apigenin, alpha-hederin, and asiatic acid exhibited significant docking performance and interacted with several amino acid residues of the main protease of SARS-CoV-2. Conclusion: In summary, apigenin, alpha-hederin, and asiatic acid protease inhibitors may be effective potential antiviral agents against the main viral protease (Mpro) to combat SARS-CoV-2.


2020 ◽  
Vol 11 (1) ◽  
pp. 8052-8064

Protein-protein Interaction (PPIs) plays a central role in many diseased conditions. Therefore to target and to modulate PPIs is an efficient approach for the disease treatment. Cancer is also arising because of Protein-protein interaction. In cancer, the tumor suppressor p53 protein got inhibited by the MDM2 protein. p53 protein regulates the cell cycle and apoptosis. Interaction between the p53-MDM2 proteins is responsible for the inhibition of the p53 function. By this interaction, MDM2 degrades and inhibits the p53 protein. Hence, to target and inhibit the p53-MDM2 interaction for the treatment of cancer is the rational approach. By targeting this interaction with the drugs, we can selectively kill the cancer cells over the normal cells. Recently, p53-MDM2 interaction inhibitor drugs have been reported by many researchers and pharmaceutical companies. And several drugs entered into the clinical trials. In this study, a novel 1,2,4-triazole based molecules were designed as MDM2 inhibitors and performed their in-silico study. We designed the novel compound 01 and Lead 1a. In this work, In silico study of the Lead 1a and reference compounds (Nutlin 3a, RG7112) was carried out. The molecular docking study of the Novel 1,2,4-triazole based lead 1a and reference compounds was carried out. The docking score of the Lead 1a found to be better than Nutlin 3a and close to RG7112. The various possible conformations and binding affinity values were also determined by the docking study. These results indicate the Lead 1a as a potential MDM2 inhibitor and anti-cancer agent.


RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31106-31114
Author(s):  
Abutaleb Alinejad ◽  
Heidar Raissi ◽  
Hassan Hashemzadeh

The objective of this study is to develop a controlled and water-soluble delivery system for doxorubicin (DOX) based on the coating of graphene (G) with a smart polymer.


2021 ◽  
Vol 43 (3) ◽  
pp. 1335-1349
Author(s):  
Paulina Kęska ◽  
Joanna Stadnik

Peptidyl peptidase IV (DPP-IV) is a pharmacotherapeutic target in type 2 diabetes, and inhibitors of this enzyme are an important class of drugs for the treatment of type 2 diabetes. In the present study, peptides (<7 kDa) isolated from dry-cured pork loins after pepsin and pancreatin hydrolysis were identified by mass spectrometry and tested as potential inhibitors of DPP-IV by the in silico method. Two peptides, namely WTIAVPGPPHS from myomesin (water-soluble fraction, A = 0.9091) and FKRPPL from troponin (salt-soluble fraction, A = 0.8333), were selected as the most promising inhibitors of DPP-IV. Both peptides were subjected to ADMET analysis. Fragments of these peptides showed promising drug-likeness properties as well as favorable absorption, distribution, metabolism, excretion, and toxicity functions, suggesting that they are novel leads in the development of DPP-IV inhibitors from food.


2021 ◽  
pp. 22-27
Author(s):  
L. Thamaraiselvi ◽  
T. Selvankumar ◽  
E.G. Wesely ◽  
N. Vinod Kumar

Herbs are essential resources for drug discovery. However, numerous challenges stand in front of the scientific community to discover novel drugs from herbs. To explore the validation behind the precious knowledge of traditional medicine, we focused on achieving virtual screening to detect the potential medicines from the herbs.  Five bioactive compounds from known anti-inflammatory medicinal plants were examined through molecular docking against  cyclooxygenase-2 (COX-2) and inducible Nitric Oxide Synthase (iNOS), using AutoDock 4.2. The docking of selected ligands with COX-2 showed the binding energy varying from -6.15 Kcal/mol to ‑11.24 Kcal/mol. The docking energies of identified ligands with iNOS were generated ranges from -3.85kcal/mol to -6.99 kcal/mol.  Among the tested ligands, it was noted that 6 urs-12-en-24-oic acid showed the best binding energy than other compounds with the lowest binding energy and highest binding affinity with both anti-inflammatory target proteins COX-2 and iNOS. The in silico study validates the potential phytochemical compound of the medicinal herb that contribute to anti-inflammatory activity with low toxicity and minimal side effects.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 342
Author(s):  
Ihsan A. Shehadi ◽  
Mohamad T. T. Abdelrahman ◽  
Mohamed Abdelraof ◽  
Huda R. M. Rashdan

A new series of 1,3,4-thiadiazoles was synthesized by the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate (2) with selected derivatives of hydrazonoyl halide by grinding method at room temperature. The chemical structures of the newly synthesized derivatives were resolved from correct spectral and microanalytical data. Moreover, all synthesized compounds were screened for their antimicrobial activities using Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. However, compounds 3 and 5 showed significant antimicrobial activity against all tested microorganisms. The other prepared compounds exhibited either only antimicrobial activity against Gram-positive bacteria like compounds 4 and 6, or only antifungal activity like compound 7. A molecular docking study of the compounds was performed against two important microbial enzymes: tyrosyl-tRNA synthetase (TyrRS ) and N-myristoyl transferase (Nmt). The tested compounds showed variety in binding poses and interactions. However, compound 3 showed the best interactions in terms of number of hydrogen bonds, and the lowest affinity binding energy (–8.4 and –9.1 kcal/mol, respectively). From the in vitro and in silico studies, compound 3 is a good candidate for the next steps of the drug development process as an antimicrobial drug.


Sign in / Sign up

Export Citation Format

Share Document