scholarly journals Aquatic Toxicity Integrated Testing and Assessment Strategies (ITS) for Difficult Substances: Case Study With Thiochemicals

Author(s):  
Monika Nendza ◽  
Jan Ahlers

Abstract Background An Integrated Testing and Assessment Strategy (ITS) for aquatic toxicity of 16 thiochemicals to be registered under REACH revealed 12 data gaps, which had to be filled by experimental data. These test results are now available and offer the unique opportunity to subject previous estimates obtained by read-across (analogue and category approaches) to an external validation. The case study thiochemicals are so-called difficult substances due to instability and poor water solubility, challenging established ITS. Results The new experimental data confirm the previous predictions of acute aquatic toxicity with the new test results indicating a 2-5 times lower toxicity than previously predicted. The previous predictions thus are conservative and closer to the experimental results than expected. The good agreement can be attributed to the fact that we had limited the extrapolations to narrow chemical groups with similar SH-group reactivities. The new experimental data further strengthen and externally validate the existing trends based on similarity in chemical structures, mode of action (MoA), water solubility and stability of source and target compounds in aquatic media. Based on the new experimental data, reliable revised PNECs could be derived and the REACH requirements for these thiochemicals are largely fulfilled. Appropriately adapted ITS are therefore able to reduce in vivo tests with fish even for difficult substances and replace them with alternative information. Conclusions Both experimental and alternative information for difficult substances such as thiochemicals that are rapidly transformed in water are subject to considerable uncertainty. For example, the use of nominal, initial or time-weighted average concentrations, contribute variability in the determination of aquatic toxicity. The use of nominal concentrations is likely to be the most appropriate choice as it reflects realistic worst-case environmental conditions in these cases. In general, uncertainties in (historical) test results and alternative information (read-across) must be considered in terms of how much uncertainty is acceptable for environmental protection on the one hand and how much certainty is technically feasible on the other.

2020 ◽  
Author(s):  
Il Kwon Cho ◽  
Sung Hyun Moon ◽  
Kwang-Hui Cho

Estimating binding affinity between a target protein and the ligand is a crucial step in the drug discovery process. In computer aided drug design (CADD), the problem can be divided into two steps, finding the correct binding pose and estimating binding free energy. In this study, a new binding affinity estimation protocol, which uses molecular docking and binding affinity estimation with Molecular Dynamics (MD) simulation and maximizes the use of available experimental data, is suggested. Docking with a custom scoring function was used to find a better initial binding pose and Linear Interaction Energy (LIE) method with an optimized coefficient was used to estimate the binding affinity. The protocol has been validated with an external validation set and applied to five modafinil and its derivatives to set the order of binding affinity to Adenosine A2A receptors (ADORA2A, A2aR), which is a membrane protein, for a case study. This protocol could be time efficient and useful for computational drug discovery where limited experimental data is available.


2020 ◽  
Author(s):  
Il Kwon Cho ◽  
Sung Hyun Moon ◽  
Kwang-Hui Cho

Estimating binding affinity between a target protein and the ligand is a crucial step in the drug discovery process. In computer aided drug design (CADD), the problem can be divided into two steps, finding the correct binding pose and estimating binding free energy. In this study, a new binding affinity estimation protocol, which uses molecular docking and binding affinity estimation with Molecular Dynamics (MD) simulation and maximizes the use of available experimental data, is suggested. Docking with a custom scoring function was used to find a better initial binding pose and Linear Interaction Energy (LIE) method with an optimized coefficient was used to estimate the binding affinity. The protocol has been validated with an external validation set and applied to five modafinil and its derivatives to set the order of binding affinity to Adenosine A2A receptors (ADORA2A, A2aR), which is a membrane protein, for a case study. This protocol could be time efficient and useful for computational drug discovery where limited experimental data is available.


2020 ◽  
Author(s):  
Il Kwon Cho ◽  
Sung Hyun Moon ◽  
Kwang-Hui Cho

Estimating binding affinity between a target protein and the ligand is a crucial step in the drug discovery process. In computer aided drug design (CADD), the problem can be divided into two steps, finding the correct binding pose and estimating binding free energy. In this study, a new binding affinity estimation protocol, which uses molecular docking and binding affinity estimation with Molecular Dynamics (MD) simulation and maximizes the use of available experimental data, is suggested. Docking with a custom scoring function was used to find a better initial binding pose and Linear Interaction Energy (LIE) method with an optimized coefficient was used to estimate the binding affinity. The protocol has been validated with an external validation set and applied to five modafinil and its derivatives to set the order of binding affinity to Adenosine A2A receptors (ADORA2A, A2aR), which is a membrane protein, for a case study. This protocol could be time efficient and useful for computational drug discovery where limited experimental data is available.


1981 ◽  
Vol 20 (04) ◽  
pp. 207-212 ◽  
Author(s):  
J. Hermans ◽  
B. van Zomeren ◽  
J. W. Raatgever ◽  
P. J. Sterk ◽  
J. D. F. Habbema

By means of a case study the choice between several methods of discriminant analysis is presented. Experimental data of a two-groups problem with one or two variables is analysed. The different methods are compared according to posterior probabilities which can be computed for each subject and which are the basis of discriminant analysis. These posterior probabilities are analysed graphically as well as numerically.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


2020 ◽  
Vol 100 (3) ◽  
pp. 1013-1036 ◽  
Author(s):  
Matthew Wilson ◽  
Sandi Lane ◽  
Raghuveer Mohan ◽  
Margaret Sugg

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Ji Hyung Nam ◽  
Dong Jun Oh ◽  
Sumin Lee ◽  
Hyun Joo Song ◽  
Yun Jeong Lim

Capsule endoscopy (CE) quality control requires an objective scoring system to evaluate the preparation of the small bowel (SB). We propose a deep learning algorithm to calculate SB cleansing scores and verify the algorithm’s performance. A 5-point scoring system based on clarity of mucosal visualization was used to develop the deep learning algorithm (400,000 frames; 280,000 for training and 120,000 for testing). External validation was performed using additional CE cases (n = 50), and average cleansing scores (1.0 to 5.0) calculated using the algorithm were compared to clinical grades (A to C) assigned by clinicians. Test results obtained using 120,000 frames exhibited 93% accuracy. The separate CE case exhibited substantial agreement between the deep learning algorithm scores and clinicians’ assessments (Cohen’s kappa: 0.672). In the external validation, the cleansing score decreased with worsening clinical grade (scores of 3.9, 3.2, and 2.5 for grades A, B, and C, respectively, p < 0.001). Receiver operating characteristic curve analysis revealed that a cleansing score cut-off of 2.95 indicated clinically adequate preparation. This algorithm provides an objective and automated cleansing score for evaluating SB preparation for CE. The results of this study will serve as clinical evidence supporting the practical use of deep learning algorithms for evaluating SB preparation quality.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 965
Author(s):  
Xingyue Zhu ◽  
Kaixiong Yu ◽  
Xiaofan Zhu ◽  
Juan Su ◽  
Chi Wu

Nowadays, it is still a challenge for commercial nitrate sensors to meet the requirement of high accuracy in a complex water. Based on deep-ultraviolet spectral analysis and a regression algorithm, a different measuring method for obtaining the concentration of nitrate in seawater is proposed in this paper. The system consists of a deuterium lamp, an optical fiber splitter module, a reflection probe, temperature and salinity sensors, and a deep-ultraviolet spectrometer. The regression model based on weighted average kernel partial least squares (WA-KPLS) algorithm together with corrections for temperature and salinity (TSC) is established. After that, the seawater samples from Western Pacific and Aoshan Bay in Qingdao, China with the addition of various nitrate concentrations are studied to verify the reliability and accuracy of the method. The results show that the TSC-WA-KPLS algorithm shows the best results when compared against the multiple linear regression (MLR) and ISUS (in situ ultraviolet spectrophotometer) algorithms in the temperatures range of 4–25 °C, with RMSEP of 0.67 µmol/L for Aoshan Bay seawater and 1.08 µmol/L for Western Pacific seawater. The method proposed in this paper is suitable for measuring the nitrate concentration in seawater with higher accuracy, which could find application in the development of in-situ and real-time nitrate sensors.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 5
Author(s):  
Raquel de Melo Barbosa ◽  
Fabio Fonseca de Oliveira ◽  
Gabriel Bezerra Motta Câmara ◽  
Tulio Flavio Accioly de Lima e Moura ◽  
Fernanda Nervo Raffin ◽  
...  

Nano-hybrid formulations combine organic and inorganic materials in self-assembled platforms for drug delivery. Laponite is a synthetic clay, biocompatible, and a guest of compounds. Poloxamines are amphiphilic four-armed compounds and have pH-sensitive and thermosensitive properties. The association of Laponite and Poloxamine can be used to improve attachment to drugs and to increase the solubility of β-Lapachone (β-Lap). β-Lap has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. However, the low water solubility of β-Lap limits its clinical and medical applications. All samples were prepared by mixing Tetronic 1304 and LAP in a range of 1–20% (w/w) and 0–3% (w/w), respectively. The β-Lap solubility was analyzed by UV-vis spectrophotometry, and physical behavior was evaluated across a range of temperatures. The analysis of data consisted of response surface methodology (RMS), and two kinds of machine learning (ML): multilayer perceptron (MLP) and support vector machine (SVM). The ML techniques, generated from a training process based on experimental data, obtained the best correlation coefficient adjustment for drug solubility and adequate physical classifications of the systems. The SVM method presented the best fit results of β-Lap solubilization. In silico tools promoted fine-tuning, and near-experimental data show β-Lap solubility and classification of physical behavior to be an excellent strategy for use in developing new nano-hybrid platforms.


Sign in / Sign up

Export Citation Format

Share Document