scholarly journals USP13 Regulates the Breast Tumor Proliferation and Migration through the Stabilization of PDCD4 Protein

Author(s):  
Jun Tian ◽  
Bei Li ◽  
Jing Qiao ◽  
Xinfeng Pang ◽  
Xiaojing Yue

Abstract Background: Programmed cell death protein 4 (PDCD4), which serves as a tumor suppressor protein, plays a important role in cell proliferation,apoptosis, cell migration and DNA-damage response.However, the exact mechanism for the deubiquitination of PDCD4 remain unclear.Methods: Western blotting was used to detect the expression of PDCD4 in the breast cancer tissues and BC cell lines. We identified the potential PDCD4 associated deubiquitinase by RNAi screening. GST-Pull down and domain-mapping analysis were used to reveal that USP13 and PDCD4 directly interact with each other.Flow cytometry was used to detect the changes of G1 to S phase. Soft agar assay was used to measure the changes of the cell proliferation efficiency.Results: The expression of PDCD4 was decreased in the breast cancer tissues and BC cell lines. USP13 as a potential PDCD4 associated deubiquitinase. USP13 physically interacted with PDCD4 and greatly increased the steady state of PDCD4 through the ubiquitin-proteasome pathway.Importantly, silencing of the USP13 facilitated cell cycle from G1 to Sphase, promoted breast tumor cells proliferation and migration through downregulation of PDCD4. Conclusions: Together, these results suggest that USP13 plays an important role in the breast tumor proliferation and migration through modulating PDCD4 stability.

Tumor Biology ◽  
2014 ◽  
Vol 35 (5) ◽  
pp. 4447-4456 ◽  
Author(s):  
Vanita Vanas ◽  
Elsa Mühlbacher ◽  
Rosana Kral ◽  
Hedwig Sutterlüty-Fall

2020 ◽  
Vol 15 (1) ◽  
pp. 49-58
Author(s):  
Junhe Zhang ◽  
Shujie Chai ◽  
Xinyu Ruan

Background: Breast cancer is among the most common malignant cancers worldwide, and breast adenocarcinoma in glandular tissue cells has excessive metastasis and invasion capability. However, little is known on the molecular process by which this disease develops and progresses. Objective: In this study, we explored the effects of sex-determining region Y-box 4 (SOX4) protein on proliferation, migration, apoptosis and tumourigenesis of breast adenocarcinoma and its possible mechanisms. Methods: The SOX4 overexpression or knockdown Michigan Cancer Foundation-7 (MCF-7) cell lines were established. Among the SOX4 overexpression or MCF-7 knockdown cell lines, proliferation, migration ability and apoptosis rate were detected. The expression levels of apoptosis-related proteins (Bax and Cleaved caspase-3) were analysed using Western blot. The effect of SOX4 on tumourigenesis was analysed using the clone formation assay in vitro and tumour xenograft experiment in nude mice. Results: Compared with the overexpression of control cells, proliferation and migration ability of SOX4 overexpression cells significantly increased, the apoptosis rate significantly decreased in addition to the expression levels of Bax and Cleaved caspase-3 (P < 0.05). Compared with the knockdown of control cells, proliferation and migration ability of SOX4 knockdown cells significantly decreased, and the apoptosis rate and expression levels of Bax and Cleaved caspase-3 significantly increased (P < 0.05). Clone formation and tumour growth abilities of SOX4 overexpression cells were significantly higher than those of the control cells (P < 0.05), whereas SOX4 knockdown cells had the opposite effect. Conclusion: SOX4 plays an oncogenic role in breast adenocarcinoma tumourigenesis by promoting cell proliferation, migration and inhibiting apoptosis. It can be used as a potential molecular target for breast cancer gene therapy.


2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer. Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression. Results: ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells. Conclusion: Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhidong Zhao ◽  
Xianju Qin

Abstract Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Therefore, finding new and promising drugs to eradicate cancer may be a feasible method to treat COAD patients. Cys2-His2 zinc finger proteins (ZFPs) is one of the largest transcription factor family and many of them are highly involved in regulation of cell differentiation, proliferation, apoptosis, and neoplastic transformation. In this study, we identified a tumor-inhibiting factor, ZNF549, which expressed lowly in COAD tissues and COAD cell lines (HT29, HCT116, SW480, LoVo, and SW620). Overexpression of ZNF549 inhibit the ability of COAD cell proliferation and migration. On the contrary, decreasing the ZNF549 expression level promote the ability of COAD cell proliferation and migration. Through bioinformatics analysis, we found that ZNF549 was a potential target of hsa-miR-708-5p (miR-708-5p). Furthermore, we verified the possibility of miR-708-5p targeting the ZNF549 gene, and miR-708-5p inhibited the expression of ZNF549 by luciferase reporter assays, qRT-PCR and western blot assays. Moreover, the relationship between miR-708-5p and phosphatidylinositol 3-kinase/AKt (PI3K/AKt) signal pathway was elucidated. Overexpression and inhibition of miR-708-5p resulted in increased and decreased expression of p-AKt and p-PI3K in HCT116 cells, respectively. RT-qPCR and western blot assays results demonstrated that miR-708-5p regulated COAD cells development by promoting the process of Epithelial-mesenchymal transition (EMT) through PI3K/AKt signaling pathway. In summary, our findings demonstrated that ZNF549, the target gene of miR-708-5p, functions as a tumor suppressor to inhibit COAD cell lines proliferation and migration through regulate the PI3K/AKt signal pathway.


Sign in / Sign up

Export Citation Format

Share Document