scholarly journals Over-expression of ANP32E is associated with poor prognosis of pancreatic cancer and promotes cell proliferation and migration through regulating β-catenin

2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer. Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression. Results: ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells. Conclusion: Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer. Methods The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression. Results ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells. Conclusion Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer.Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression.Results: ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells.Conclusion: Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high lethality. Acidic nuclear phosphoprotein 32 family member E (ANP32E) is a specific H2A.Z chaperone. The role of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the clinical relevance and function of ANP32E in pancreatic cancer.Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and its correlation with patients’ survival were analyzed from the TCGA database. ANP32E was overexpressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle detection and Transwell assays were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression.Results: ANP32E was an oncogene in pancreatic cancer. ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor survival in patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E overexpression promoted the proliferation and migration capacity of the cells. In addition, ANP32E overexpression accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells.Conclusion: Our results reveal that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769118 ◽  
Author(s):  
Jianguang Jin ◽  
Zhijie Chu ◽  
Pengfei Ma ◽  
Yuanpu Meng ◽  
Yanhui Yang

SIRT1 plays an important role in human malignant progression, inducing cancer cell proliferation and metastasis by regulating downstream gene expressions. However, little is known about the underlying mechanisms in which SIRT1 promotes pancreatic cancer tumorigenesis. The aim of this study is to investigate the SIRT1 expression levels and biological functions in promoting pancreatic cancer progression. We first investigated the expression of SIRT1 in a series of pancreatic cancer tissues as well as in a panel of pancreatic cancer cell lines. The effect of SIRT1 on cell activity was explored by knockdown experiments. Cell growth was measured using the MTT assay and colony-formation assay. Migration and invasion were tested using transwell assay. Our results showed that the expression of SIRT1 was significantly up-regulated both in pancreatic cancer tissues and cell lines. Knockdown of SIRT1 suppressed cell proliferation and migration of pancreatic cancer cells. This is the first report to disclose the role of SIRT1 in regulation of pancreatic cancer cell proliferation and migration, which may provide a potential therapeutic target for pancreatic cancer patients.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jaeyong Kang ◽  
Hansaem Kim ◽  
Hyangsoon Noh ◽  
Byung-Ha Kang ◽  
Jaejik Kim ◽  
...  

AbstractObjectivesBreast cancer (BC) is the most commonly diagnosed cancer in women worldwide with a high mortality rate, despite early detection and treatment. Spindle and kinetochore-associated complex subunit 3 (SKA3) is closely correlated with patient outcomes in several cancers. The present study aimed to elucidate the role of SKA3 in BC.MethodsThe biological functions of SKA3 was investigated by proliferation and migration assays in MDA-MB-231 cells with stable SKA3 knockdown and Hs578T cells ectopically expressing SKA3. Gene Expression Omnibus datasets were utilised to determine the correlation between SKA3 expression and clinical features of BC patients.ResultsWe confirmed that SKA3 mRNA expression is higher in breast tumour tissue than in normal tissue, and that higher SKA3 expression is associated with poor survival rate of BC patients. Knockdown of SKA3 reduced MDA-MB-231 cell proliferation and migration, whereas SKA3 overexpression enhanced the proliferative and migratory ability of Hs578T cells. We also found that SKA3 is involved in regulating cell cycle progression in mitotic exit.ConclusionsThese results suggest that SKA3 is correlated with BC cell proliferation and migration by promoting cell cycle progression, and could be a novel potential therapeutic target for BC treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


Author(s):  
Jianing Tang ◽  
Qiuxia Cui ◽  
Dan Zhang ◽  
Xing Liao ◽  
Yan Gong ◽  
...  

Abstract Background Stromal cells recruited to the tumor microenvironment and long non-coding RNAs (lncRNAs) in the tumor cells regulate cancer progression. However, their relationship is largely unknown. Methods In the current study, we identified the effects of lncRNA FAM83H-AS1, induced by adipose-derived stem cells (ADSCs) during tumor development, and explored the underlying mechanisms using a coculture cell model. Adipose tissues were obtained from healthy female donors, the expression of stromal markers on cell surface of expanded ADSCs were confirmed using immunofluorescence analysis. The breast and pancreatic cancer cells were cultured with or without ADSCs using 24-well transwell chamber systems with 8.0 µm pore size. Results Our results showed that FAM83H-AS1 was upregulated in breast and pancreatic cancers and associated with poor prognosis. ADSCs further induced FAM83H-AS1 and increased tumor cell proliferation via promoting G1/S transition through cyclin D1, CDK4 and CDK6. Wound healing, modified Boyden chamber and immunoblotting assays demonstrated that ADSCs induced epithelial-mesenchymal transition and migration of breast and pancreatic cancer cells in a FAM83H-AS1-dependent manner. And ADSC-induced FAM83H-AS1 increased unfolded protein response through AKT/XBP1 pathway. Conclusion In conclusion, our results indicated that ADSCs promoted breast and pancreatic cancer development via inducing cell proliferation and migration, as well as unfolded protein response through FAM83H-AS1.


Sign in / Sign up

Export Citation Format

Share Document