scholarly journals Biochemical and Cytological Interactions Between Callose Synthase and Microtubules in the Tobacco Pollen Tube

Author(s):  
LUIGI PARROTTA ◽  
Claudia Faleri ◽  
Cecilia Del Casino ◽  
Lavinia Mareri ◽  
Iris Aloisi ◽  
...  

Abstract Callose is a cell wall polysaccharide involved in several fundamental biological processes, ranging from plant development to response to abiotic and biotic stresses. To understand how callose deposition is regulated, it is important to know how its synthesizing enzyme, i.e., callose synthase, is regulated and if it interacts with vesicular-cytoskeletal system of plant cells. Actin filaments are thought to determine the long-range distribution of callose synthase through transport vesicles. Unlike other enzymes (such as cellulose synthase) that synthesize cell wall polysaccharides, the spatial and biochemical relationships between callose synthase and microtubules are poorly understood. Some experimental evidence already support the association between callose synthase and tubulin, however, despite its importance in maintaining plant integrity, knowledge about regulation of callose biosynthesis is still limited. Here we investigated the association between callose synthase and cytoskeleton by biochemical and ultrastructural analyses in a model system, pollen tube, where callose is an essential cell wall component. Native 2-D electrophoresis and isolation of the callose synthase complex confirmed that callose synthase is associated with tubulin and can interface with cortical microtubules. In contrast, actin and sucrose synthase (which supplies UDP-glucose to callose synthase) are not permanently associated with callose synthase. Immunogold labeling showed strong colocalization of the enzyme and microtubules; this association is occasionally mediated by vesicles. The association between callose synthase and vesicles was also demonstrated by co-distribution between the enzyme and Rab11b; in addition, the not homogeneous distribution of callose synthase in cell membranes is also shown by analysis of membrane microdomains.

2009 ◽  
Vol 75 (7) ◽  
pp. 1938-1949 ◽  
Author(s):  
Anne Briolay ◽  
Jamel Bouzenzana ◽  
Michel Guichardant ◽  
Christian Deshayes ◽  
Nicolas Sindt ◽  
...  

ABSTRACT The pathways responsible for cell wall polysaccharide biosynthesis are vital in eukaryotic microorganisms. The corresponding synthases are potential targets of inhibitors such as fungicides. Despite their fundamental and economical importance, most polysaccharide synthases are not well characterized, and their molecular mechanisms are poorly understood. With the example of Saprolegnia monoica as a model organism, we show that chitin and (1→3)-β-d-glucan synthases are located in detergent-resistant membrane microdomains (DRMs) in oomycetes, a phylum that comprises some of the most devastating microorganisms in the agriculture and aquaculture industries. Interestingly, no cellulose synthase activity was detected in the DRMs. The purified DRMs exhibited similar biochemical features as lipid rafts from animal, plant, and yeast cells, although they contained some species-specific lipids. This report sheds light on the lipid environment of the (1→3)-β-d-glucan and chitin synthases, as well as on the sterol biosynthetic pathways in oomycetes. The results presented here are consistent with a function of lipid rafts in cell polarization and as platforms for sorting specific sets of proteins targeted to the plasma membrane, such as carbohydrate synthases. The involvement of DRMs in the biosynthesis of major cell wall polysaccharides in eukaryotic microorganisms suggests a function of lipid rafts in hyphal morphogenesis and tip growth.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Min Xiao ◽  
Jianyong Yi ◽  
Jinfeng Bi ◽  
Yuanyuan Zhao ◽  
Jian Peng ◽  
...  

The influences of hot air drying (AD), medium- and short-wave infrared drying (IR), instant controlled pressure drop drying (DIC), and vacuum freeze drying (FD) on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92) and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10), the minimum hardness (17.4 N), and the highest volume ratio (0.76) and rehydration ratio (7.55). Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP) were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR) was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.


Soft Matter ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1534-1549 ◽  
Author(s):  
Marta Martínez-Sanz ◽  
Michael J. Gidley ◽  
Elliot P. Gilbert

SANS data of bacterial cellulose and its composites with plant cell wall polysaccharides can be described by a core–shell model which accounts for the distinct solvent accessibility to the ribbons' inner/outer regions.


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 114-116 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Kiyohide Kojima ◽  
Tatsushi Ogata

Various species and cultivars of citrus were studied to determine the relationship between texture and cell wall polysaccharide content of fruit flesh. Among those tested cultivars, navel orange (Citrus sinensis Osbeck) and hassaku (C. hassaku Hort. ex Tanaka) were firmest, `Fukuhara orange' (C. sinensis Osbeck) was intermediate, and satsuma mandarin (C. unshiu Marc.) was softest. There was a 3-fold difference in firmness among the 12 citrus cultigens measured. Cohesiveness values ranged from 0.30 to 0.49 and were not correlated with fruit firmness. Sugar content in each cell wall fraction was highest in the water and EDTA fractions, followed by the hemicellulose fraction, and was lowest in the cellulose fraction. Correlation coefficients between firmness and sugar content ranged from 0.69 to 0.88 and were highest in the cellulose fraction. This study suggests that firmness of fruit flesh among the cultigens is influenced by cell wall polysaccharide composition. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 160 ◽  
Author(s):  
Taotao Li ◽  
Dingding Shi ◽  
Qixian Wu ◽  
Chunxiao Yin ◽  
Fengjun Li ◽  
...  

Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on ‘shatangju’ mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect ‘shatangju’ mandarin.


1992 ◽  
Vol 117 (6) ◽  
pp. 930-933 ◽  
Author(s):  
M. Darlene Mercer ◽  
Doyle A. Smittle

`Gemini II' cucumber (Cucumis sativus L.) fruits were stored for 2, 4, or 6 days at 5 and 6C in 1989 and for 5 days at SC or 10 days at 3C in 1990. Chilling injury (CI) symptoms were rated after 2 to 4 days at 25C. Cell wall polysaccharide concentrations in the peels and in injured and noninjured portions of the peels were determined only in 1990. High CO2 and low O2 delayed the onset of CI symptoms, but did not prevent symptom development. Chilling injury symptoms increased with longer exposure to chilling temperatures. Solubilization of cell wall polysaccharides was associated with development of CI symptoms. Variations in low methoxyl pectinates accounted for 70% of the variation in CI.


HortScience ◽  
1999 ◽  
Vol 34 (1) ◽  
pp. 79-81 ◽  
Author(s):  
Noboru Muramatsu ◽  
Toshio Takahara ◽  
Tatsushi Ogata ◽  
Kiyohide Kojima

Changes in rind firmness and cell wall polysaccharide composition were measured in fruit with a) a soft rind, (`Satsuma' mandarin, Citrus unshiu Marc., cv. Aoshima), and b) a firm rind (hassaku, C. hassaku Hort. ex Tanaka), from August to January of the following year. Rind firmness was similar in both species in August, but hassaku had significantly firmer rind than did mandarin from September to January. Both flavedo and albedo tissues were extracted, and the extracts were hydrolyzed and fractionated to yield four fractions: (hot water, EDTA, hemicellulose, and cellulose). In flavedo tissue, sugar concentration was highest in the cellulose fraction, and lowest in the hemicellulose fraction. The concentration in all fractions decreased as the fruit developed and matured. Although the sugar concentration in the cellulose and EDTA fractions of both species was similar in August, it was significantly higher in both fractions in hassaku than in mandarin in January. The sugar concentration of each fraction from albedo tissue was in the order: cellulose > hemicellulose > hot water > EDTA. The range of variation in cell wall sugars in albedo tissue was smaller than that in flavedo tissue. Chemical name used: ethylenediaminetetraacetic acid (EDTA).


2015 ◽  
pp. 69-75
Author(s):  
Abu Torab MA Rahim ◽  
Sanjida Akter ◽  
Nusrat Ahmed

An enzymatic-gravimetric method was employed to determine the content of insoluble dietary fiber and lignin in 4 cereals, 5 pulses, 4 starchy roots, and 3 tubers along with some of their varieties. The cultivars were identified at Bangladesh Agriculture Research Council and noted as their high yielding varieties released within last decade for cultivation in Bangladesh. Insoluble dietary fiber content, equivalent to alpha-amylase treated neutral detergent fiber (termed as E-NDF), was in a range from 0.97 g to 10.45 g for cereals, 8.18 g to 25.66 g for pulses, 2.62 g to 6.88 g for roots, and 2.26 g to 8.11 g for tubers per 100 g raw sample. Cell wall polysaccharides and Lignin were estimated from the E-NDF fraction sequentially using the methods of Van Soest and co-workers. Hemicellulose was found dominant among cell-wall polysaccharides in all the studied materials (up to 24.85% in pulses). Cell wall polysaccharide and lignin were not detected in some of the studied samples. Highest amount of cellulose was found in 'Gourab' variety of wheat (3.48%) while highest amount of lignin was estimated in sweet potato (2.87%). The results will, thus, provide a source data for dietary calculations.


Sign in / Sign up

Export Citation Format

Share Document