scholarly journals Mechanism of Cell Wall Polysaccharides Modification in Harvested ‘Shatangju’ Mandarin (Citrus reticulate Blanco) Fruit Caused by Penicillium italicum

Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 160 ◽  
Author(s):  
Taotao Li ◽  
Dingding Shi ◽  
Qixian Wu ◽  
Chunxiao Yin ◽  
Fengjun Li ◽  
...  

Modification of cell wall polysaccharide in the plant plays an important role in response to fungi infection. However, the mechanism of fungi infection on cell wall modification need further clarification. In this study, the effects of Penicillium italicum inoculation on ‘shatangju’ mandarin disease development and the potential mechanism of cell wall polysaccharides modification caused by P. italicum were investigated. Compared to the control fruit, P. italicum infection modified the cell wall polysaccharides, indicated by water-soluble pectin (WSP), acid-soluble pectin (ASP), hemicellulose and lignin contents change. P. italicum infection enhanced the activities of polygalacturonase (PG), pectin methylesterase (PME), and the expression levels of xyloglucanendotransglucosylase/hydrolase (XTH) and expansin, which might contribute to cell wall disassembly and cellular integrity damage. Additionally, higher accumulation of reactive oxygen species (ROS) via decreasing antioxidant metabolites and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) also contributed to the cell wall polysaccharides modification. Meanwhile, the gene expression levels of hydroxyproline-rich glycoprotein (HRGP) and germin-like protein (GLP) were inhibited by pathogen infection. Altogether, these findings suggested that cell wall degradation/modification caused by non-enzymatic and enzymatic factors was an important strategy for P. italicum to infect ‘shatangju’ mandarin.

1999 ◽  
Vol 77 (7) ◽  
pp. 961-968 ◽  
Author(s):  
Oussama Ahrazem ◽  
Begoña Gómez-Miranda ◽  
Alicia Prieto ◽  
Isabel Barasoaín ◽  
Manuel Bernabé ◽  
...  

The water-soluble polysaccharides (F1SS) obtained from the alkali extracts of the cell wall of two strains of Penicillium vermoesenii Biourge, Fusarium javanicum Koorders, Fusarium solani (Martius) Saccardo, and Fusarium oxysporum Schlechtendahl represented 8.7 to 10.7% of the dry cell wall material. All polysaccharides were composed of galactose (22.0-27.4%), glucose (18.4-30.3%), mannose (7.8-23.1%), and glucuronic acid (3.0-6.0%, except in F. oxysporum that contained 16.8%). Methylation analysis and 1H-NMR spectra of the polysaccharides of these fungi were similar except for F. oxysporum, which showed a higher peak of glucuronic acid than of glucose. The chemical and structural analyses performed indicated that F1SS polysaccharides of the species studied have a skeleton of beta-(1–>6) galactofuranose, fully substituted at positions O-2 by a single residue of glucopyranose or by short side chains containing one glucuronic acid residue and beta-mannopyranose. This polysaccharide is linked to a mannose core consisting of a short chain of alpha-(1–>6)-linked D-mannopyranose. Immunological methods confirm the structural relatedness among these polysaccharides. No similarities were found with the 1H-NMR spectra of F1SS polysaccharides from other species of Penicillium or Gliocladium. These results show that P. vermoesenii is closer to the genus Fusarium than to Penicillium or Gliocladium.Key words: Penicillium vermoesenii, cell wall polysaccharides, chemotaxonomy, NMR, polyclonal antibodies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marlee A. Trandel ◽  
Suzanne Johanningsmeier ◽  
Jonathan Schultheis ◽  
Chris Gunter ◽  
Penelope Perkins-Veazie

Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting “Liberty” watermelon to “Carnivor” (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 μg⋅mg–1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 μg⋅mg–1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.


2021 ◽  
Vol 22 (6) ◽  
pp. 3077
Author(s):  
Zhenzhen Hao ◽  
Xiaolu Wang ◽  
Haomeng Yang ◽  
Tao Tu ◽  
Jie Zhang ◽  
...  

Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.


2000 ◽  
Vol 104 (5) ◽  
pp. 603-610 ◽  
Author(s):  
O. Ahrazem ◽  
B. Gómez-Miranda ◽  
A. Prieto ◽  
I. Barasoaín ◽  
M. Bernabé ◽  
...  

1971 ◽  
Vol 125 (2) ◽  
pp. 473-480 ◽  
Author(s):  
M. A. Obaidah ◽  
K. W. Buck

1. The nature of two polysaccharides (s020 values 6S and 2S respectively in 1m-sodium hydroxide), comprising a fragment (fraction BB, [α]D +236° in 1m-sodium hydroxide), previously isolated from cell walls of Fusicoccum amygdali, has been investigated. 2. Both the major (2S) and minor (6S) components were affected by incubation with α-amylase. The 6S polysaccharide was also attacked by exo-β-(1→3)-glucanase, which is evidence that it contained both α-(1→4)- and β-(1→3)-glucopyranose linkages. By fractionation of the products of α-amylase-treated fraction BB it was possible to obtain a water-insoluble polysaccharide, fraction P ([α]D +290° in 1m-sodium hydroxide, 67% of fraction BB) and a water-soluble polysaccharide, fraction Q ([α]D +16° in 1m-sodium hydroxide, 11% of fraction BB), both of which sedimented as single boundaries with s020 values (in 1m-sodium hydroxide) of 1.7S and 4.6S respectively. 3. Evidence from periodate oxidation, methylation analysis, i.r. spectroscopy and partial acid hydrolysis showed that fraction P consisted of linear chains of α-(1→3)-glucopyranose units with blocks of one or two α-(1→4)-glucopyranose units interspersed at intervals along the main chain. The 2S polysaccharide, from which fraction P is derived, evidently also contains longer blocks of α-(1→4)-glucopyranose units, that are susceptible to α-amylase action. 4. Fraction Q consisted of glucose (88%) with small amounts of galactose, mannose and rhamnose. Evidence from digestion with exo- and endo-β-(1→3)-glucanases, periodate oxidation and methylation analysis suggests that fraction Q consists of a branched galactomannorhamnan core, to which is attached a β-(1→3)-, β-(1→6)-glucan. In the cell wall, chains of α-(1→4)-linked glucopyranose units are linked to fraction Q to form the 6S component of fraction BB.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 755
Author(s):  
Angyan Ren ◽  
Rana Ahmed ◽  
Huanyu Chen ◽  
Linhe Han ◽  
Jinhao Sun ◽  
...  

Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Min Xiao ◽  
Jianyong Yi ◽  
Jinfeng Bi ◽  
Yuanyuan Zhao ◽  
Jian Peng ◽  
...  

The influences of hot air drying (AD), medium- and short-wave infrared drying (IR), instant controlled pressure drop drying (DIC), and vacuum freeze drying (FD) on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92) and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10), the minimum hardness (17.4 N), and the highest volume ratio (0.76) and rehydration ratio (7.55). Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP) were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR) was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.


Soft Matter ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1534-1549 ◽  
Author(s):  
Marta Martínez-Sanz ◽  
Michael J. Gidley ◽  
Elliot P. Gilbert

SANS data of bacterial cellulose and its composites with plant cell wall polysaccharides can be described by a core–shell model which accounts for the distinct solvent accessibility to the ribbons' inner/outer regions.


Sign in / Sign up

Export Citation Format

Share Document