scholarly journals Shear Behavior of Single Cast-in Anchor Simulating Characteristics of Bridge Bearing Anchor

Author(s):  
Jin-Seok Choi ◽  
Won Jong Chin ◽  
Tian-Feng Yuan ◽  
Young-Soo Yoon

Abstract A bridge bearing anchor transmits various loads of a superstructure to a substructure. However, most anchors are generally designed without consideration of characteristics such as concrete pedestal, grout bedding, and anchor socket. Therefore, this study investigated the shear behavior of anchors in accordance with the edge distance, embedment depth, compressive strength of concrete, and height of the concrete pedestal in order to simulate the practical characteristics of the bridge bearing anchors. The actual shear capacity of the anchor differs from the shear strength calculated by the ACI 318 Code; especially, the importance of the embedment depth is underestimated in the code. An increase in the height of the concrete pedestal has a negative effect on the shear capacity because of the stress concentration. The grout is fractured prior to the occurrence of local damages in concrete, resulting in a secondary moment. As a result, the effect of the level arm is observed. An equation, which can predict the relative cracking degree of concrete, is proposed by analyzing the displacement of grout and concrete. High strain occurs in the stirrups close to the anchor, and the behavior of the strain is more influenced by the embedment depth than the edge distance. Finally, the design equation of concrete breakout strength is modified to predict the more precise shear resistance of a bridge bearing anchor.

2012 ◽  
Vol 204-208 ◽  
pp. 3287-3293
Author(s):  
Xin Xue ◽  
Hiroshi Seki ◽  
Yu Song

There have been few reports on shear behavior of reinforced concrete (RC) beams with corroded stirrups, and the influence of stirrup corrosion has yet to be identified. Given this background, experience was carried out to investigate the shear behavior of RC beams containing corroded stirrups. Investigation results indicate that if the percentage local maximum mass loss is below 35%, there is little influence on the load-carrying mechanism. The concrete shear resistance seems to change little and the shear capacity can be calculated by just taking into consideration the reduction in stirrup shear resistance. It is also found that the anchorage conditions of the stirrups have a predominant influence on the shears of RC beams.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Xingwei Xue ◽  
Xuan Wang ◽  
Xudong Hua ◽  
Meizhong Wu ◽  
Longqing Wu ◽  
...  

The shear performance of concrete beams is known to be an important mechanical feature; hence, enhanced shear resistance is critical for determining a beam’s performance in terms of security and service life. This paper presents a study on the shear behavior of concrete beams without web reinforcement strengthened by external vertical prestressing rebars (EVPRs). Experimental data were obtained from seven test beams with varying influencing factors (stirrup ratio ρsEP, arrangement spacing s, prestressing force Fp, and compressive stress degree γp of the EVPRs) to determine their effects on the shear behavior. The results reveal that the EVPRs can significantly improve the shear capacity and ductility of concrete beams without web reinforcement. Furthermore, the failure mode is changed from brittle diagonal tension to relatively ductile shear compression, and the flexural cracks and shear cracks are more fully developed. The shear capacity becomes enhanced as the ρsEP and γp are increased; vertical compressive stress provided by the EVPRs can reduce the principal tensile stress of the concrete structure to prevent the shear cracking and enhance the shear resistance of the concrete. Meanwhile, in the stage from the formation of the critical shear crack (CSC) to the shear failure, the EVPRs can be used as stirrups to share the shear load. It can be concluded that EVPRs can effectively improve the shear performance of concrete beams.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 502-522
Author(s):  
Anton Bogdanić ◽  
Daniele Casucci ◽  
Joško Ožbolt

Concrete splitting failure due to tension load can occur when fastening systems are located close to an edge or corner of a concrete member, especially in thin members. This failure mode has not been extensively investigated for anchor channels. Given the current trend in the construction industry towards more slender concrete members, this failure mode will become more and more relevant. In addition, significantly different design rules in the United States and Europe indicate the need for harmonization between codes. Therefore, an extensive numerical parametric study was carried out to evaluate the influence of member thickness, edge distance, and anchor spacing on the capacity of anchor channels in uncracked and unreinforced concrete members. One of the main findings was that the characteristic edge distance depends on the member thickness and can be larger than 3hef (hef = embedment depth) for thin members. Based on the numerical and experimental test results, modifications of the design recommendations for the splitting failure mode are proposed. Overall, the authors recommend performing the splitting verification separately from the concrete breakout to design anchor channels in thin members more accurately.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3346
Author(s):  
Bora Gencturk ◽  
Hadi Aryan ◽  
Mohammad Hanifehzadeh ◽  
Clotilde Chambreuil ◽  
Jianqiang Wei

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali–silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force–deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali–silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.


2015 ◽  
Vol 10 (2) ◽  
pp. 103-112
Author(s):  
Sinan Korjenic ◽  
Bernhard Nowak ◽  
Philipp Löffler ◽  
Anna Vašková

Abstract This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 423
Author(s):  
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Results of an experimental investigation aimed at studying the effect of steel fibers on the shear behavior of concrete deep beams made with a 100% recycled concrete aggregate (RCA) are presented in this paper. The study comprised testing of seven concrete deep beam specimens with a shear span-to-depth ratio (a/h) of 1.6. Two beams were made of natural aggregates (NAs) without steel fibers, two beams were made of a 100% RCA without steel fibers, and three beams were made of RCA-based concrete with steel fibers at volume fractions (vf) of 1, 2, and 3%. Two of the beams without steel fibers included a minimum shear reinforcement. Test results showed that the beam with a 100% RCA without steel fibers exhibited a lower post-cracking stiffness, reduced shear cracking load, and lower shear capacity than those of the NA-based control beam. The detrimental effect of the RCA on the shear response was less pronounced in the presence of the minimum shear reinforcement. The addition of steel fibers significantly improved the shear response of the RCA-based beams. The post-cracking stiffness of the RCA-based concrete beams with steel fibers coincided with that of a similar beam without fibers containing the minimum shear reinforcement. The use of steel fibers in RCA beams at vf of 1 and 2% restored 80 and 90% of the shear capacity, respectively, of a similar beam with the minimum shear reinforcement. The response of the RCA specimen with vf of 3% outperformed that of the NA-based control beam with the minimum shear reinforcement, indicating that steel fibers can be used in RCA deep beams as a substitution to the minimum shear reinforcement. The shear capacities obtained from the tests were compared with predictions of published analytical models.


Author(s):  
Aysha M Zaneeb ◽  
Rupen Goswami ◽  
C V R Murty

An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear capacity of RC columns. Shear–moment (V-M) interaction capacity diagram of an RC column, viewed alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when estimating shear capacity of RC columns.  In addition, the method provides insights into the shear resistance mechanism in RC columns under the combined action of P-V-M, and it is simple to use.


2008 ◽  
Vol 400-402 ◽  
pp. 335-340
Author(s):  
Xiao Wei Wang ◽  
Wen Ling Tian ◽  
Zhi Yuan Huang ◽  
Ming Jie Zhou ◽  
Xiao Yan Zhao

The thickness of the raft slab is determined by punching shear. The raft slab is commonly thick, which causes concrete volume is large. Mass concrete can bring disadvantage to the foundation. In order to increase the bearing capacity and reduce the thickness, it is suggested that the raft slab to be reinforced by steel fibers. There are five groups of specimens in this paper. S1 is the common reinforced concrete slab. S2 and S3 are concrete slabs reinforced by steel fibers broadcasted layer by layer when casting specimen. S4 and S5 are concrete slabs reinforced by steel fibers mixed homogeneously when making concrete. The punching shear tests of these slabs were done. The test results indicate that the punching shear capacity of the slab reinforced with steel fibers is higher than that of concrete slab, the stiffness and crack resistance of the steel fibers reinforced concrete slab are better than those of the common concrete slab and the punching shear of the slabs with different construction methods of steel fibers is similar. It analyses the punching shear behavior of the slab reinforced with steel fibers and suggests the ultimate bearing formula. The calculative values are coincided with the measured values well.


2018 ◽  
Vol 26 (1) ◽  
pp. 9-18
Author(s):  
Dooyong Cho ◽  
Jinwoong Choi ◽  
Hoseong Jeong

When Perfobond Rib shear connectors are used as flexural materials in structures such as bridges, they show flexural shear behavior due to external force, rather than direct shear behavior. The aim of this study is thus to analyze the difference between both behaviors. First, we prepared a specimen to analyze direct shear behavior using Perfobond Rib shear connectors, analyzed the characteristics of behavior with a push-out test and proposed a formula of shear resistance assessment. Proposed formula shows a relatively good fit with less than 10% error. A flexural shear test was then conducted based on the result of the direct shear test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction. Finally, we compared both test results, and the comparison showed that the flexural shear stress is approximately 6% stronger than the direct shear stress.


Sign in / Sign up

Export Citation Format

Share Document