scholarly journals Humoral Immune Response in a Mouse Model Induced With Dengue Virus-like Particles Serotypes 1 and 4 Produced in Silkworm Larvae

Author(s):  
Doddy Irawan ◽  
Sabar Pambudi ◽  
Enoch Y. Park

Abstract Dengue is an arboviral disease, which threatens almost half the global population, and has emerged as the most significant of current global public health challenges. In this study, we prepared dengue virus-like particles (DENV-LPs) consisting of Capsid-Premembrane-Envelope (CprM/E) and Premembrane-Envelope (prM/E) polypeptides from serotype 1 and 4, which were expressed in the silkworms using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid. 1CprME, 1prME, 4CprME, and 4prME expressed proteins in hemolymph and molecular weight of the purified proteins were 55 kDa, respectively. The purified polypeptides formed spherical Dengue virus-like particles (DENV-LPs) with approximately 30–55 nm in diameter. The immunoelectron microscopy (IEM) images revealed antigens to the surface of a lipid bilayer of DENV-LPs. The heparin-binding assay shows a positive relationship between absorbance and the quantity of E protein domain III (EDIII), which was supported by the isothermal titration calorimetry assay, showing a moderate binding affinity between heparin and DENV-LP. The high correlation between patient sera and DENV-LP reactivities revealed that these DENV-LPs shared similar epitopes with the natural dengue virus. IgG elicitation studies in mice have demonstrated that DENV-LP/CPrMEs elicits a stronger immune response than DENV-LP/prMEs, which lends credence to this claim.

2020 ◽  
Author(s):  
Doddy Irawan Setyo Umoto ◽  
Sabar Pambudi ◽  
Fithriyah Sjatha ◽  
Tatsuya Kato ◽  
Enoch Y. Park

Abstract To develop monovalent dengue virus-like particle for serotype 3 (DENV-LP/3), we prepared and expressed two structural polyprotein constructs using silkworm and Bm5 cells: DENV-3 Capsid-premembrane-envelope (DENV-3CprME) and premembrane-envelope (DENV-3prME). The expressed PA-tagged 3CprME and 3prME polypeptides were partially purified by PA-tag affinity chromatography and had molecular weights of 85 and 75 kDa, respectively. Expressed proteins were separately verified using the following primary antibodies: the anti-PA tag antibody, DENV premembrane polyclonal antibody, and DENV envelope polyclonal antibody. Transmission electron microscopy revealed that these DENV-3CprME and 3prME formed rough, spherical DENV-LPs (DENV-LP/3CprME and DENV-LP/3prME), respectively, with a diameter of 30–55 nm. The heparin-binding assay demonstrated that these DENV-LPs contained the envelope protein domain III on their surfaces. Both DENV-LPs showed an affinity to sera from human dengue patients and immunized mice. Immunization of mice with DENV-LP/3prME significantly induced the level of antibodies compared with DENV-LP/3CprME. These results indicate that DENV-LP/3prME is suitable as a vaccine candidate compared with DENV-LP/3CprME.


2020 ◽  
Author(s):  
Doddy Irawan Setyo Umoto ◽  
Sabar Pambudi ◽  
Fithriyah Sjatha ◽  
Tatsuya Kato ◽  
Enoch Y. Park

Abstract To develop monovalent dengue virus -like particle for serotype 3 (DENV-LP/3), two kinds of structural polyprotein constructs, DENV-3 Capsid-premembrane-Envelope (DENV-3CprME) and premembrane-Envelope (DENV-3prME), have been prepared and expressed using silkworm and Bm5 cells. The expressed PA-tagged 3CprME and 3prME polypeptides were partially purified by PA-tag affinity chromatography and found the molecular weights of 85 and 75 kDa, respectively. Expressed proteins were verified using the anti-PA tag antibody, DENV premembrane polyclonal antibody, and DENV envelope polyclonal antibody, as primary antibody separately. Transmission electron microscopy (TEM) image revealed these DENV-3CprME and 3prME formed a rough spherical shaped dengue virus-like particles (DENV-LP/3CprME and DENV-LP/3prME), respectively, with a diameter of 30–55 nm. The heparin-binding assay demonstrated that these DENV-LPs contain Envelope Domain (ED) III on the surface of each DENV-LP. Both DENV-LPs showed the affinity to sera from human dengue patients and immunized-mice. Immunization of DENV-LP/3prME to mice induced a significantly higher of antibodies level to itself than that of DENV-LP/3CprME. These results indicate that DENV-LP/3prME is suitable as a vaccine candidate compared to DENV-LP/3CprME.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Doddy Irawan Setyo Utomo ◽  
Sabar Pambudi ◽  
Fithriyah Sjatha ◽  
Tatsuya Kato ◽  
Enoch Y. Park

2020 ◽  
Author(s):  
Jayant V. Rajan ◽  
Michael McCracken ◽  
Caleigh Mandel-Brehm ◽  
Greg Gromowski ◽  
Simon Pollett ◽  
...  

ABSTRACTNatural dengue virus (DENV) infections are delivered by mosquito bite but how the route of inoculation route could shape the humoral immune response is not well understood. Here, we serologically profiled 20 non-human primates (NHP) from a prior study of DENV1 infection in which the animals were inoculated by mosquito (N=10) or subcutaneous injection (N=10). Using a comprehensive, densely tiled and highly redundant pan-flavivirus programmable phage library containing 91,562 overlapping 62 amino acid peptides, we produced a high-resolution map of linear peptide sequences enriched during DENV seroconversion. We found that serological profiles in mosquito-inoculated and subcutaneously-inoculated animals were similar up to 90 days after primary infection, but diverged at 1 year. We found differences in sero-reactivity, as indicated by the median area under the curve (AUC) in the Envelope (E; residues 215-406; p < 0.08), and Nonstructural-3 (NS3; residues 549-615; p < 0.05) proteins in mosquito-inoculated versus subcutaneously-inoculated animals. Within the E protein, residues 339-384 in domain III accounted for >99% of the total AUC difference across residues 215-406. Antibody breadth did not vary by mode of inoculation. The differential reactivity to E domain III (EDIII) seen by phage display validated orthogonally by ELISA, but did not correlate with late neutralization titers. Serological profiling of humoral immune responses to DENV infection in NHP by programmable phage display demonstrated durable differences in sero-reactivity by route of inoculation. These findings could have implications for DENV diagnostics and evaluation of vaccines.IMPORTANCEDengue virus (DENV) infections are transmitted by mosquito bite, but how being infected by mosquito bite affects the immune response is not known. In this study, we analyzed antibodies produced by rhesus macaques infected with DENV using programmable phage display, a high-throughput method for characterizing what viral protein derived peptides serum antibodies bind to. We found that while there was no difference in antibody binding profiles at early timepoints post-infection, at one year post-infection, there were substantial differences in the antibody binding profiles of macaques who were infected by mosquito bite versus those that were infected by injection. In general, antibodies in the macaques inoculated by mosquito maintained higher levels of sero-reactivity, with a strong signal still present one year post-infection. The findings we report could have implications for DENV diagnostics and evaluation of DENV vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayant V. Rajan ◽  
Michael McCracken ◽  
Caleigh Mandel-Brehm ◽  
Greg Gromowski ◽  
Simon Pollett ◽  
...  

AbstractNatural dengue virus (DENV) infections occur by mosquito bite but how the inoculation route affects the humoral immune response is unknown. We serologically profiled 20 non-human primates (NHP) from a prior study of DENV1 infection where animals were inoculated by mosquito (N = 10) or subcutaneous injection (N = 10). Using a comprehensive, densely tiled and highly redundant pan-flavivirus programmable phage library containing 91,562 overlapping 62 amino acid peptides, we produced a high-resolution map of linear peptide sequences enriched during DENV seroconversion. Profiles in mosquito-inoculated and subcutaneously-inoculated animals were similar up to 90 days after primary infection, but diverged at 1 year with differences in sero-reactivity in the Envelope (E; residues 215–406; p < 0.08), and Nonstructural-3 (NS3; residues 549–615; p < 0.05) proteins in mosquito-inoculated versus subcutaneously-inoculated animals. Within the E protein, residues 339–384 in domain III accounted for > 99% of the observed sero-reactivity difference. Antibody breadth did not vary by mode of inoculation. The differential reactivity to E domain III seen by phage display validated orthogonally by ELISA, but did not correlate with late neutralization titers. Serological profiling of humoral immune responses to DENV infection in NHP by programmable phage display demonstrated durable differences in sero-reactivity by route of inoculation.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
S. D. Perera ◽  
S. S. N. Perera

Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking, innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the viral kinetics during a dengue infection.


2019 ◽  
Vol 12 (07) ◽  
pp. 1950077 ◽  
Author(s):  
Sulanie Perera ◽  
S. S. N. Perera

Dengue is an acute arthropode-borne virus, belonging to the family Flaviviridae. Currently, there are no vaccines or treatments available against dengue. Thus it is important to understand the dynamics of dengue in order to control the infection. In this paper, we study the long-term dynamics of the model that is presented in [S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Comput. Math. Methods Med. 2018 (2018) 8798057, 18 pp. https://doi.org/10.1155/2018/8798057 ] which describes the interaction of virus with infected and uninfected cells in the presence of innate and humoral immune responses. It was found the model has three equilibria, namely: infection free equilibrium, no immune equilibrium and endemic equilibrium, then analyzed its stability analytically. The analytical findings of each model have been exemplified by numerical simulations. Given the fact that intensity of dengue virus replication at early times of infection could determine clinical outcomes, it is important to understand the impact of innate immunity, which is believed to be the first line of defense against an invading pathogen. For this we carry out a simulation case study to investigate the importance of innate immune response on dengue virus dynamics. A comparison was done assuming that innate immunity was active; innate immunity was in quasi-steady state and innate immunity was inactive during the virus replication process. By a further analysis of the qualitative behavior of the quasi-steady state, it was observed that innate immune response plays a pivotal role in dengue virus dynamics. It can change the dynamical behavior of the system and is essential for the virus clearance.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 307 ◽  
Author(s):  
César López-Camacho ◽  
Giuditta De Lorenzo ◽  
Jose Luis Slon-Campos ◽  
Stuart Dowall ◽  
Peter Abbink ◽  
...  

The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.


1986 ◽  
Vol 28 (2) ◽  
pp. 111-125 ◽  
Author(s):  
Eduardo L. F. Franco

This literature review discusses the most frequently used serodiagnostic methods for the determination of the humoral immune response to malarial parasites. The importance of malaria as a global public health problem is stressed in the light of the new discoveries leading to the future development of an anti-malarial vaccine suitable for use in humans. Serological techniques are expected to play an important role in the assessment of the relative efficacy of these candidate vaccines. A discussion of the different antigen preparation techniques is also presented.


Sign in / Sign up

Export Citation Format

Share Document