scholarly journals Inoculation by mosquito induces durable differences in serological profile in non-human primates infected with DENV1

2020 ◽  
Author(s):  
Jayant V. Rajan ◽  
Michael McCracken ◽  
Caleigh Mandel-Brehm ◽  
Greg Gromowski ◽  
Simon Pollett ◽  
...  

ABSTRACTNatural dengue virus (DENV) infections are delivered by mosquito bite but how the route of inoculation route could shape the humoral immune response is not well understood. Here, we serologically profiled 20 non-human primates (NHP) from a prior study of DENV1 infection in which the animals were inoculated by mosquito (N=10) or subcutaneous injection (N=10). Using a comprehensive, densely tiled and highly redundant pan-flavivirus programmable phage library containing 91,562 overlapping 62 amino acid peptides, we produced a high-resolution map of linear peptide sequences enriched during DENV seroconversion. We found that serological profiles in mosquito-inoculated and subcutaneously-inoculated animals were similar up to 90 days after primary infection, but diverged at 1 year. We found differences in sero-reactivity, as indicated by the median area under the curve (AUC) in the Envelope (E; residues 215-406; p < 0.08), and Nonstructural-3 (NS3; residues 549-615; p < 0.05) proteins in mosquito-inoculated versus subcutaneously-inoculated animals. Within the E protein, residues 339-384 in domain III accounted for >99% of the total AUC difference across residues 215-406. Antibody breadth did not vary by mode of inoculation. The differential reactivity to E domain III (EDIII) seen by phage display validated orthogonally by ELISA, but did not correlate with late neutralization titers. Serological profiling of humoral immune responses to DENV infection in NHP by programmable phage display demonstrated durable differences in sero-reactivity by route of inoculation. These findings could have implications for DENV diagnostics and evaluation of vaccines.IMPORTANCEDengue virus (DENV) infections are transmitted by mosquito bite, but how being infected by mosquito bite affects the immune response is not known. In this study, we analyzed antibodies produced by rhesus macaques infected with DENV using programmable phage display, a high-throughput method for characterizing what viral protein derived peptides serum antibodies bind to. We found that while there was no difference in antibody binding profiles at early timepoints post-infection, at one year post-infection, there were substantial differences in the antibody binding profiles of macaques who were infected by mosquito bite versus those that were infected by injection. In general, antibodies in the macaques inoculated by mosquito maintained higher levels of sero-reactivity, with a strong signal still present one year post-infection. The findings we report could have implications for DENV diagnostics and evaluation of DENV vaccines.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jayant V. Rajan ◽  
Michael McCracken ◽  
Caleigh Mandel-Brehm ◽  
Greg Gromowski ◽  
Simon Pollett ◽  
...  

AbstractNatural dengue virus (DENV) infections occur by mosquito bite but how the inoculation route affects the humoral immune response is unknown. We serologically profiled 20 non-human primates (NHP) from a prior study of DENV1 infection where animals were inoculated by mosquito (N = 10) or subcutaneous injection (N = 10). Using a comprehensive, densely tiled and highly redundant pan-flavivirus programmable phage library containing 91,562 overlapping 62 amino acid peptides, we produced a high-resolution map of linear peptide sequences enriched during DENV seroconversion. Profiles in mosquito-inoculated and subcutaneously-inoculated animals were similar up to 90 days after primary infection, but diverged at 1 year with differences in sero-reactivity in the Envelope (E; residues 215–406; p < 0.08), and Nonstructural-3 (NS3; residues 549–615; p < 0.05) proteins in mosquito-inoculated versus subcutaneously-inoculated animals. Within the E protein, residues 339–384 in domain III accounted for > 99% of the observed sero-reactivity difference. Antibody breadth did not vary by mode of inoculation. The differential reactivity to E domain III seen by phage display validated orthogonally by ELISA, but did not correlate with late neutralization titers. Serological profiling of humoral immune responses to DENV infection in NHP by programmable phage display demonstrated durable differences in sero-reactivity by route of inoculation.


2021 ◽  
Author(s):  
Doddy Irawan ◽  
Sabar Pambudi ◽  
Enoch Y. Park

Abstract Dengue is an arboviral disease, which threatens almost half the global population, and has emerged as the most significant of current global public health challenges. In this study, we prepared dengue virus-like particles (DENV-LPs) consisting of Capsid-Premembrane-Envelope (CprM/E) and Premembrane-Envelope (prM/E) polypeptides from serotype 1 and 4, which were expressed in the silkworms using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid. 1CprME, 1prME, 4CprME, and 4prME expressed proteins in hemolymph and molecular weight of the purified proteins were 55 kDa, respectively. The purified polypeptides formed spherical Dengue virus-like particles (DENV-LPs) with approximately 30–55 nm in diameter. The immunoelectron microscopy (IEM) images revealed antigens to the surface of a lipid bilayer of DENV-LPs. The heparin-binding assay shows a positive relationship between absorbance and the quantity of E protein domain III (EDIII), which was supported by the isothermal titration calorimetry assay, showing a moderate binding affinity between heparin and DENV-LP. The high correlation between patient sera and DENV-LP reactivities revealed that these DENV-LPs shared similar epitopes with the natural dengue virus. IgG elicitation studies in mice have demonstrated that DENV-LP/CPrMEs elicits a stronger immune response than DENV-LP/prMEs, which lends credence to this claim.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
S. D. Perera ◽  
S. S. N. Perera

Dengue virus is a mosquito borne Flavivirus and the most prevalent arbovirus in tropical and subtropical regions around the world. The incidence of dengue has increased drastically over the last few years at an alarming rate. The clinical manifestation of dengue ranges from asymptomatic infection to severe dengue. Even though the viral kinetics of dengue infection is lacking, innate immune response and humoral immune response are thought to play a major role in controlling the virus count. Here, we developed a computer simulation mathematical model including both innate and adaptive immune responses to study the within-host dynamics of dengue virus infection. A sensitivity analysis was carried out to identify key parameters that would contribute towards severe dengue. A detailed stability analysis was carried out to identify relevant range of parameters that contributes to different outcomes of the infection. This study provides a qualitative understanding of the biological factors that can explain the viral kinetics during a dengue infection.


2019 ◽  
Vol 12 (07) ◽  
pp. 1950077 ◽  
Author(s):  
Sulanie Perera ◽  
S. S. N. Perera

Dengue is an acute arthropode-borne virus, belonging to the family Flaviviridae. Currently, there are no vaccines or treatments available against dengue. Thus it is important to understand the dynamics of dengue in order to control the infection. In this paper, we study the long-term dynamics of the model that is presented in [S. D. Perera and S. S. N. Perera, Simulation model for dynamics of dengue with innate and humoral immune responses, Comput. Math. Methods Med. 2018 (2018) 8798057, 18 pp. https://doi.org/10.1155/2018/8798057 ] which describes the interaction of virus with infected and uninfected cells in the presence of innate and humoral immune responses. It was found the model has three equilibria, namely: infection free equilibrium, no immune equilibrium and endemic equilibrium, then analyzed its stability analytically. The analytical findings of each model have been exemplified by numerical simulations. Given the fact that intensity of dengue virus replication at early times of infection could determine clinical outcomes, it is important to understand the impact of innate immunity, which is believed to be the first line of defense against an invading pathogen. For this we carry out a simulation case study to investigate the importance of innate immune response on dengue virus dynamics. A comparison was done assuming that innate immunity was active; innate immunity was in quasi-steady state and innate immunity was inactive during the virus replication process. By a further analysis of the qualitative behavior of the quasi-steady state, it was observed that innate immune response plays a pivotal role in dengue virus dynamics. It can change the dynamical behavior of the system and is essential for the virus clearance.


2004 ◽  
Vol 71 (2) ◽  
pp. 144-152 ◽  
Author(s):  
FLAVIA BARRETO DOS SANTOS ◽  
EVA HARRIS ◽  
RITA MARIA RIBEIRO NOGUEIRA ◽  
LEE W. RILEY ◽  
MARIZE PEREIRA MIAGOSTOVICH ◽  
...  

2020 ◽  
Author(s):  
Puya Dehgani-Mobaraki ◽  
Asiya Kamber Zaidi ◽  
Annamaria Porreca ◽  
Alessandro Floridi ◽  
Emanuela Floridi

AbstractAn improved understanding of the immunity offered by the antibodies developed against SARS-CoV-2 is critical for the development of diagnostic tests and vaccines. Our study aimed at the longitudinal analysis of antibody presence, persistence and its trend over a period of eight months in a group of COVID-19 recovered patients who tested positive by real-time quantitative PCR for SARS-CoV-2 in the period between the 18th and 30th of March, 2020. The subjects were divided into two groups based on disease severity: mild and moderately-severe. The MAGLUMI 2019-nCoV lgM/lgG chemiluminescent analytical system (CLIA) assay was used to analyse the antibody titres. Robust IgG antibody persistency was demonstrated in 76.7 % of the subjects (23 out of 30) at eight months post-infection. The results of this study highlight an important point in terms of the association between humoral immune response and disease severity. Patients who might have experienced a relatively moderate-severe infection may develop a robust immunity that could persist for a longer duration.


2021 ◽  
Author(s):  
Piotr Kosiorek ◽  
Dorota Kazberuk ◽  
Anna Hryniewicz ◽  
Robert Milewski ◽  
Samuel Stróż ◽  
...  

Abstract Systemic vaccination of the BNT162b2 mRNA stimulates humoral response. Our study aimed to compare the intensity of humoral immune response, measured by SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralization S-RBD IgG antibodies level, post COVID-19 vaccination versus post-SARS COV-2 infection. We analysed 1060 people in the following groups: convalescents, healthy vaccinated, vaccinated with COMIRNATY, AstraZeneca, Moderna, Johnson & Johnson, and vaccinated SARS CoV-2 convalescents. A concentration of SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralizing S-RBD IgG was estimated in hospital laboratory by chemiluminescent immunoassay - CLIA, MAGLUMI. Results: 1. We observed a rise of antibodies response in both convalescent SARS CoV-2 and COVID-19 vaccinated groups 2. The level of all antibodies’ concentrations in vaccinated COVID-19 convalescents was significantly higher. 3. We differentiated asymptomatic SARS CoV-2 convalescents from the control group. Based on our analysis, we suggest that it is essential to monitor SARS CoV-2 antibodies concentrations as an indicator of asymptomatic COVID-19 infection and equivalent to the effectiveness of humoral response in convalescents and vaccinated people. Considering the time-limited nature of the effects of post-infection SARS CoV-2 recovery or vaccination, among others physiological half-life, we suggested monitoring IgG antibodies level as a criterium for the next vaccination.


2021 ◽  
Author(s):  
Piotr Kosiorek ◽  
Dorota Kazberuk ◽  
Anna Hryniewicz ◽  
Robert Milewski ◽  
Samuel Stróż ◽  
...  

Abstract Systemic vaccination of the BNT162b2 mRNA stimulates humoral response. The aim of our study was to compare the intensity of humoral immune response, measured by SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralization S-RBD IgG antibodies level, post COVID-19 vaccination versus post SARS COV-2 infection. We analysed 1060 people in the following groups: convalescents, healthy vaccinated, vaccinated with COMIRNATY, AstraZeneca, Moderna, Johnson&Johnson and vaccinated SARS CoV-2 convalescents. A concentration of SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralizing S-RBD IgG was estimated in Bialystok Oncology Center laboratory by chemiluminescent immunoassay- CLIA, MAGLUMI. Results: 1. We observed a raise of antibodies response in both, convalescent SARS CoV-2 and COVID-19 vaccinated groups 2. The level of all antibodies’ concentrations in vaccinated COVID-19 convalescents was significantly higher. 3. We differentiated an asymptomatic SARS CoV-2 convalescents from control group. Based on our analysis we suggest that it is important to monitor SARS CoV-2 antibodies concentrations as an indicator of asymptomatic COVID-19 infection, and as an equivalent of effectiveness of humoral response in convalescents and vaccinated people. Taking into consideration the time-limited nature of the effects of post infection SARS CoV-2 recovery or vaccination, among others physiological half-life, we suggested monitoring IgG antibodies level as a criterium for next vaccination.


2021 ◽  
Author(s):  
Piotr Kosiorek ◽  
Dorota Kazberuk ◽  
Anna Hryniewicz ◽  
Robert Milewski ◽  
Samuel Stróż ◽  
...  

Abstract Systemic vaccination of the BNT162b2 mRNA stimulates humoral response. The aim of our study was to compare the intensity of humoral immune response, measured by SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralization S-RBD IgG antibodies level, post COVID-19 vaccination versus post SARS COV-2 infection. We analysed 1060 people in the following groups: convalescents, healthy vaccinated, vaccinated with COMIRNATY, AstraZeneca, Moderna, Johnson&Johnson and vaccinated SARS CoV-2 convalescents. A concentration of SARS CoV-2 IgG, SARS CoV-2 IgM, and neutralizing S-RBD IgG was estimated in Bialystok Oncology Center laboratory by chemiluminescent immunoassay- CLIA, MAGLUMI. Results: 1. We observed a raise of antibodies response in both, convalescent SARS CoV-2 and COVID-19 vaccinated groups 2. The level of all antibodies’ concentrations in vaccinated COVID-19 convalescents was significantly higher. 3. We differentiated an asymptomatic SARS CoV-2 convalescents from control group. Based on our analysis we suggest that it is important to monitor SARS CoV-2 antibodies concentrations as an indicator of asymptomatic COVID-19 infection, and as an equivalent of effectiveness of humoral response in convalescents and vaccinated people. Taking into consideration the time-limited nature of the effects of post infection SARS CoV-2 recovery or vaccination, among others physiological half-life, we suggested monitoring IgG antibodies level as a criterium for next vaccination.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Wanzhi Huang ◽  
Victoria Soeung ◽  
David M. Boragine ◽  
Liya Hu ◽  
B. V. Venkataram Prasad ◽  
...  

ABSTRACT Norovirus (NoV) infections are a leading cause of gastroenteritis. The humoral immune response plays an important role in the control of NoV, and recent studies have identified neutralizing antibodies that bind the capsid protein VP1 to block viral infection. Here, we utilize a NoV GI.1 Jun-Fos-assisted phage display library constructed from randomly fragmented genomic DNA coupled with affinity selection for antibody binding and subsequent deep sequencing to map epitopes. The epitopes were identified by quantitating the phage clones before and after affinity selection and aligning the sequences of the most enriched peptides. The HJT-R3-A9 single-chain variable fragment (scFv) antibody epitope was mapped to a 12-amino-acid region of VP1 that is also the binding site for several previously identified monoclonal antibodies. We synthesized the 12-mer peptide and found that it binds the scFv antibody with a KD (equilibrium dissociation constant) of 46 nM. Further, alignment of enriched peptides after affinity selection on rabbit anti-NoV polyclonal antisera revealed five families of overlapping sequences that define distinct epitopes in VP1. One of these is identical to the HJT-R3-A9 scFv epitope, further suggesting that it is immunodominant. Similarly, other epitopes identified using the polyclonal antisera overlap binding sites for previously reported monoclonal antibodies, suggesting that they are also dominant epitopes. The results demonstrate that affinity selection and deep sequencing of the phage library provide sufficient resolution to map multiple epitopes simultaneously from complex samples such as polyclonal antisera. This approach can be extended to examine the antigenic landscape in patient sera to facilitate investigation of the immune response to NoV. IMPORTANCE NoV infections are a leading cause of gastroenteritis in the United States. Human NoVs exhibit extensive genetic and antigenic diversity, which makes it challenging to design a vaccine that provides broad protection against infection. Antibodies developed during the immune response play an important role in the control of NoV infections. Neutralizing antibodies that act by sterically blocking the site on the virus used to bind human cells have been identified. Identification of other antibody binding sites associated with virus neutralization is therefore of interest. Here, we use a high-resolution method to map multiple antibody binding sites simultaneously from complex serum samples. The results show that a relatively small number of sites on the virus bind a large number of independently generated antibodies, suggesting that immunodominance plays a role in the humoral immune response to NoV infections.


Sign in / Sign up

Export Citation Format

Share Document