scholarly journals Impacts of Fertilization Optimization on Ammonia Volatilization, Soil Nitrification, Denitration Intensity From Wheat Fields and Nitrogen Utilization Under Water-saving Irrigation

Author(s):  
Zhen Zhang ◽  
Zhenwen Yu ◽  
Yongli Zhang ◽  
Yu Shi

Abstract Scholars have proposed the practice of split N fertilizer application (SNFA), which has proven to be an effective approach for enhancing N use efficiency. However, the effect of SNFA on NH3 volatilization, nitrification and denitration in soil, remain largely unknown. As such, the current study assessed soil NH3 volatilization, nitrification and denitrification intensities, abundance of nitrogen cycle-related funetional genes, and invertase activity for different treatments. We applied a rate of 240 kg·ha-1 of N, and the following fertilizer ratios of the percent base to that of topdressing under water-saving irrigation: N1 (basal/dressing, 100%/0%), N2 (basal/dressing, 70%/30%), N3 (basal/dressing, 50%/50%), N4 (basal/dressing, 30%/70%), and N5 (basal/dressing, 0%/100%). N3 treatment resulted in a significant decrease in rate of NH3 volatilization. This treatment also significantly reduced nitrification and denitrification intensities, primarily owing to the reduced functional genes abundance involved in the nitrogen cycle (Amoa-AOB, nirK and nirS) and reduced invertase activity (urease, nitrate reductase, nitrite reductase) in wheat-land soil. 15N tracer studies further demonstrated that N3 treatments significantly increased the grain nitrogen accumulation by 9.50-28.27% compared with that under other treatments. This increase was primarily due to an increase in the amount of N absorbed by wheat from soil and fertilizers, which was caused by an enhancement in total N uptake (7.2-21.81%). Collectively, these results suggest that the N3 treatment (basal/dressing, 50%/50%) improves N uptake by wheat, reduces the soil NH3 volatilization rate, and has the potential to reduce the amount of N2O generated by nitrification and denitrification.

1986 ◽  
Vol 26 (1) ◽  
pp. 99 ◽  
Author(s):  
PJ White ◽  
I Vallis ◽  
PG Saffigna

Field experiments on an irrigated alkaline black earth soil of the Darling Downs, south-east Queensland, examined transformations of nitrogen (N) and its subsequent availability for the growth of wheat after stubble had been removed, mulched or incorporated. Two crop sequences were used: sorghum-3- month fallow-wheat (S-W); and wheat-7-month fallow-wheat (W-W). The crops were grown in microplots enclosed by steel cylinders (75 cm diam. and 35 cm deep) to a depth of 30 cm. For the initial crop, some plots were fertilized with l5N-labelled ammonium sulfate and others with unlabelled ammonium sulfate (50 kg N/ha). After harvest of the initial crop, labelled stubble was added to unlabelled soil, either as a mulch or incorporated, and unlabelled stubble was similarly added to soil labelled with residual 15N from the fertilizer application. Uptake of 15N by a test wheat crop and distribution of 15N in the soil-plant system were then determined. In the test crop fertilized with unlabelled urea (50 kg N/ha), incorporation of stubble depressed plant growth and N uptake by 35% in the S-W sequence but had no effect in the W-W sequence. Residual fertilizer 15N in the soil was more available to the test crop than was 15N in retained stubble (6 v. 2% and 12 v. 6% for the S-W and W-W sequences respectively). However, the test crop obtained only 0.9-1.2% of its total N uptake from residual fertilizer N and 0.4-2.9% from the stubble of the initial crop. The effects of stubble management on the availability of N from these two sources were small. If suitable rates of N fertilizer are applied, it is unlikely that crop yields will be adversely affected by stubble retention in this subtropical environment.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11467
Author(s):  
Zhen Zhang ◽  
Zhenwen Yu ◽  
Yongli Zhang ◽  
Yu Shi

Background Exploring suitable split nitrogen management is essential for winter wheat production in the Huang-Huai-Hai Plain of China (HPC) under water-saving irrigation conditions, which can increase grain and protein yields by improving nitrogen translocation, metabolic enzyme activity and grain nitrogen accumulation. Methods Therefore, a 2-year field experiment was conducted to investigate these effects in HPC. Nitrogen fertilizer was applied at a constant total rate (240 kg/ha), split between the sowing and at winter wheat jointing growth stage in varying ratios, N1 (0% basal and 100% dressing fertilizer), N2 (30% basal and 70% dressing fertilizer), N3 (50% basal and 50% dressing fertilizer), N4 (70% basal and 30% dressing fertilizer), and N5 (100% basal and 0% dressing fertilizer). Results We found that the N3 treatment significantly increased nitrogen accumulation post-anthesis and nitrogen translocation to grains. In addition, this treatment significantly increased flag leaf free amino acid levels, and nitrate reductase and glutamine synthetase activities, as well as the accumulation rate, active accumulation period, and accumulation of 1000-grain nitrogen. These factors all contributed to high grain nitrogen accumulation. Finally, grain yield increase due to N3 ranging from 5.3% to 15.4% and protein yield from 13.7% to 31.6%. The grain and protein yields were significantly and positively correlated with nitrogen transport parameters, nitrogen metabolic enzyme activity levels, grain nitrogen filling parameters. Conclusions Therefore, the use of split nitrogen fertilizer application at a ratio of 50%:50% basal-topdressing is recommended for supporting high grain protein levels and strong nitrogen translocation, in pursuit of high-quality grain yield.


1976 ◽  
Vol 56 (2) ◽  
pp. 377-384 ◽  
Author(s):  
MIR HATAM ◽  
D. J. HUME

An in vivo assay for nitrate reductase (NR) activity was adapted to measure total NR activity in soybean [Glycine max (L.) Merr.] plants grown for a 29-day period indoors. Disappearance of nitrate from the nutrient solution, plant nitrate and total plant nitrogen (N) also were measured. Under the conditions of this experiment, nitrate reduction estimated from NR activities agreed closely with actual nitrate reduction. The same assay was used to measure leaf NR activities of field-grown soybeans throughout the 1971 growing season. Leaf NR activities accounted for 77 and 72% of the total N uptake in plants receiving 0 and 280 kg N as NH4NO3/ha, respectively. Measurements of nitrate and ammonium losses from soil under soybeans and under adjacent bare soil at three stages of plant development suggested that in plots receiving no fertilizer N, 86% of N uptake from the soil was in the form of nitrate. The NR activity of field-grown plants agreed well with total plant N derived from soil nitrates. Results indicated that leaf NR activities were proportional to nitrate uptake and might be used to determine amounts and seasonal patterns of nitrate uptake by soybean plants.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 451-456 ◽  
Author(s):  
David R. Sandrock ◽  
Anita N. Azarenko ◽  
Timothy L. Righetti

Nitrogen accumulation patterns were established for Weigela florida (Bunge.) A. DC. `Red Prince' (fast growth rate) and Euonymus alatus (Thunb.) Sieb. `Compactus' (slow growth rate). From these, daily and biweekly N delivery schedules were designed to match N supply with N accumulation patterns of each taxon. Delivery schedules were sliding scales in that total N applied was controlled by independent increases (or decreases) of N concentration and solution volume. Daily and biweekly N delivery schedules were tested against a constant N rate (200 mg·L-1) and Osmocote 18N-2.6P-9.9K (The Scotts Co., Marysville, Ohio). Plants were grown in 3.8-L containers in 7 douglas fir bark: 2 sphagnum peatmoss: 1 silica sand (0.65 mm; by volume) outdoors in full sun on a gravel pad for 142 d. Within each taxon, Weigela and Euonymus grown with sliding-scale N fertilization schedules had similar total dry weights, leaf areas, and total plant N contents to plants grown with a constant N rate (200 mg·L-1) or Osmocote 18N-2.6P-9.9K. Sliding-scale liquid fertilization based on plant N requirements introduced less total N to the production cycle and resulted in higher N uptake efficiency than fertilization with a constant N rate of 200 mg·L-1. In general, liquid N fertilizer treatments resulted in plants with higher shoot to root ratios than plants treated with Osmocote 18N-2.6P-9.9K. Weigela and Euonymus treated with biweekly schedules were similar to plants treated with daily schedules (same total amount of N delivered with each treatment).


1986 ◽  
Vol 16 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Lars Owe Nilsson ◽  
Tom Ericsson

The seasonal patterns of growth and nutrient uptake of a short-rotation Salixviminalis L. plantation located along the southeastern coast of Sweden were investigated during 1981. One-year-old shoots of clone 683 yielded 9.6 t dry weight ha−1 of stems and 4.2 t dry weight ha−1 of leaves; whereas the same cultural treatment during the 2nd year after coppicing yielded 13.3 and 8.2 t dry weight ha−1, respectively. Maximums in foliage dry weight occurred between early August and early September in the older shoots (6.3 t ha−1) and in late September in the younger shoots (3.5 t ha−1). Foliage and stem growth early in the season were markedly higher in the 2-year-old shoots than in the 1-year-old shoots. N uptake increased rapidly shortly after the first fertilizer application in all three investigated plots. Aboveground N uptake ranged from 140 to 191 kg ha−1 year−1. From the onset of liquid fertilization until the end of the growing season the aboveground N uptake ranged from 92 to 98 kg N ha−1; the total N fertilization during this period was 120 kg N ha−1. Nitrogen productivity varied between clones and was higher for 2- than for 1-year-old shoots. Greater relative amounts of biomass and N were allocated to leaves on the 2-year-old shoots. The amount of N allocated to stems for producing 11 of stem biomass decreased from 4.3 to 2.5 kg during the 2nd year after coppicing.


2007 ◽  
Vol 25 (4) ◽  
pp. 197-203
Author(s):  
Yosef Amha ◽  
Heike Bohne

Abstract The growth and nitrogen (N) uptake of Rosa ‘Mariandel®’ were evaluated at four fertilization rates: 0, 0.4, 0.8 and 1.2 g N/liter (0, 0.016, 0.032 and 0.048 oz/qt). Plants were harvested at 6-week intervals. New shoots in all treatments retained the highest relative dry weight percentage, apparently at the expense of root. The total N concentration, content, and uptake at 12 and 18 weeks, but not at 6 weeks, after potting were significantly (r2 > 0.59; P = 0.0005) affected by rates of fertilization. Although DM in the old shoots of all treatments slightly increased over the first 6 weeks, the corresponding N content decreased due to translocation. Except in old shoots, a significant linear trend occurred between DM accumulation and N content but not with N concentration (at least up to 12 weeks). However, N concentration in most plant parts was significantly (P < 0.05) correlated with the respective N content. Excluding N released from the substrate, plants in 0.4, 0.8 and 1.2 g N/liter treated pots received 80, 126 and 182 mg (0.003, 0.004 and 0.006 oz) N per week, respectively, as used Osmocote (15N–4P–7.5K–1.8Mg) showed a linear (r2 > 0.99) N-releasing rate. The corresponding total mineralized N in each control pot was 96 mg (0.003 oz) and 140 mg (0.005 oz) over the first and the second 6-week interval. Overall, ‘Mariandel®’ grown in 0.8 and 1.2 g N/liter treated pots had the highest mean N concentration and content respectively.


HortScience ◽  
2012 ◽  
Vol 47 (5) ◽  
pp. 648-655 ◽  
Author(s):  
M. Pilar Bañados ◽  
Bernadine C. Strik ◽  
David R. Bryla ◽  
Timothy L. Righetti

The effects of nitrogen (N) fertilizer application on plant growth, N uptake, and biomass and N allocation in highbush blueberry (Vaccinium corymbosum L. ‘Bluecrop’) were determined during the first 2 years of field establishment. Plants were either grown without N fertilizer after planting (0N) or were fertilized with 50, 100, or 150 kg·ha−1 of N (50N, 100N, 150N, respectively) per year using 15N-depleted ammonium sulfate the first year (2002) and non-labeled ammonium sulfate the second year (2003) and were destructively harvested on 11 dates from Mar. 2002 to Jan. 2004. Application of 50N produced the most growth and yield among the N fertilizer treatments, whereas application of 100N and 150N reduced total plant dry weight (DW) and relative uptake of N fertilizer and resulted in 17% to 55% plant mortality. By the end of the first growing season in Oct. 2002, plants fertilized with 50N, 100N, and 150N recovered 17%, 10%, and 3% of the total N applied, respectively. The top-to-root DW ratio was 1.2, 1.6, 2.1, and 1.5 for the 0N, 50N, 100N, and 150N treatments, respectively. By Feb. 2003, 0N plants gained 1.6 g/plant of N from soil and pre-plant N sources, whereas fertilized plants accumulated only 0.9 g/plant of N from these sources and took up an average of 1.4 g/plant of N from the fertilizer. In Year 2, total N and dry matter increased from harvest to dormancy in 0N plants but decreased in N-fertilized plants. Plants grown with 0N also allocated less biomass to leaves and fruit than fertilized plants and therefore lost less DW and N during leaf abscission, pruning, and fruit harvest. Consequently, by Jan. 2004, there was little difference in DW between 0N and 50N treatments; however, as a result of lower N concentrations, 0N plants accumulated only 3.6 g/plant (9.6 kg·ha−1) of N, whereas plants fertilized with 50N accumulated 6.4 g/plant (17.8 kg·ha−1), 20% of which came from 15N fertilizer applied in 2002. Although fertilizer N applied in 2002 was diluted by non-labeled N applications the next year, total N derived from the fertilizer (NDFF) almost doubled during the second season, before post-harvest losses brought it back to the starting point.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 493c-493
Author(s):  
Richard C. Rosecrance ◽  
Steve A. Weinbaum ◽  
Patrick H. Brown

Contributions of nitrogen (N) fertilizer applications to nitrate pollution of groundwater is an increasing public health concern. In an effort to improve N fertilizer efficiency, a study was initiated to determine periods of tree N demand in mature, alternate bearing pistachio trees. Seasonal patterns of nitrogen accumulation in the branches (i.e. fruit, current year wood, one year old wood, and leaves) and roots were monitored monthly. Branches from heavily fruiting trees contained almost six times more nitrogen than branches from light fruiting trees by September; a result of the large amount of N accumulated in the fruit. Nitrogen accumulated in the branches during the Spring growth flush and nut fill periods in both heavy and light fruiting trees. Root nitrate and total N concentrations, however, peaked during the Spring growth flush and subsequently decreased during nut fill. The relationship between tree N demand and the capacity for N uptake is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Laibin Huang ◽  
Seemanti Chakrabarti ◽  
Jennifer Cooper ◽  
Ana Perez ◽  
Sophia M. John ◽  
...  

AbstractNitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N2O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N2O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N2O yields between 0.18 and 0.41 ng N2O–N per µg NOx–N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral part of the nitrogen cycle in a highly fertile agricultural soil.


Sign in / Sign up

Export Citation Format

Share Document