scholarly journals Addition of Ca2+ to Titanium Plates by a Hydrothermal Method and the Effects on Human Gingival Fibroblasts

Author(s):  
Zhendi Fu ◽  
Xuehua Deng ◽  
Xiaodan Fang

Abstract Background: Human gingival fibroblasts (hGFs) have key roles in the formation of soft-tissue attachments around dental implants. We added calcium ions (Ca2+) to the surface of titanium plates (TPs) to make it more conducive to the early adhesion and proliferation of hGFs. Methods: Ca2+ was loaded onto the TP surface by a hydrothermal method. The morphology and composition of TP surfaces were determined by scanning electron microscopy and energy-dispersive spectroscopy. Proliferation of hGF-1 cells was measured by the CCK-8 assay. Immunofluorescence staining was done to detect adherent proteins on the TP surface. TPs were divided randomly into two groups: control and Ca.Results: In the Ca group, irregular lamellar crystals were found on the surface of TPs; The percentage of hGF-1 cells adhering to TPs in the Ca group was significantly higher than that in control group (P < 0.01); The fluorescence of integrin-β1 and F-actin in the Ca group was stronger than that in the control group. Conclusions: Our data suggest that Ca2+ can be added to TP surfaces by a hydrothermal method, and can enhance hGF adhesion. This property may be beneficial if Ca2+ is added to titanium surfaces before dental implantation.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.


1993 ◽  
Vol 106 (1) ◽  
pp. 343-354 ◽  
Author(s):  
C. Oakley ◽  
D.M. Brunette

Contact guidance refers to the reactions of cells with the topography of their substratum. Current hypotheses on the mechanism of contact guidance focus on the dynamic behaviour of the cytoskeletal components, but most observations have been made on cells that have already become oriented with topographic features of the substratum. The purpose of this study was to examine the sequence in which microtubules, focal contacts and microfilament bundles become aligned to the substratum topography as fibroblasts spread on grooved substrata. Human gingival fibroblasts were trypsinized and seeded onto grooved titanium surfaces produced by micromachining, as well as onto control smooth surfaces. After observation and photography of the spreading cells at times up to 6 hours, the cells were fixed and exposed to one or more of the following antibodies or fluorescent stains: phallacidin to stain actin filaments, monoclonal anti-tubulin, monoclonal anti-vinculin, anti-mouse IgG labelled with Texas-Red or FITC, and/or an aldehyde-reactive stain to identify the cell outline. The cells were photographed and cell area, shape and orientation were calculated. Cells were also examined with confocal microscopy to obtain optical sections so that cell height as well as the precise locations of the cytoskeletal components with respect to the vertical dimension of the grooved substrata could be determined. Microtubules were the first element to become oriented parallel to the direction of the grooves and were first aligned at the bottom of the grooves. This alignment of microtubules was evident as early as 20 minutes after plating and preceded the orientation of the cell as a whole. Aligned actin microfilament bundles were not observed until 40–60 minutes and were observed first at the wall-ridge edges. At early times, focal contacts were distributed radially, but only after 3 hours did the majority of cells demonstrate aligned focal contacts. If the first cytoskeletal component to become aligned is the prime determinant of cell orientation, then these data suggest that microtubules in human gingival fibroblasts may determine cell orientation on grooved titanium surfaces. By analogy with microtubule behaviour in other systems, we suggest that microtubule orientation on grooved substrata may occur as a result of the substratum establishing shear-free planes.


2016 ◽  
Vol 17 (6) ◽  
pp. 457-462 ◽  
Author(s):  
Isleine P Caldas ◽  
Miriam Z Scelza ◽  
Marco A Gallito ◽  
Gutemberg Alves ◽  
Licínio Silva

ABSTRACT Aims The aim of this study is to evaluate the in vitro response of human gingival fibroblasts in primary cultures to two materials for temporary relining of dentures: Temporary Soft (TDV, Brazil) and Trusoft (Bosworth, USA) for 24 hours, 7 and 30 days by using a multi-parametric analysis. Materials and methods Each material sample (TDV, TS, Polystyrene, Latex) was prepared and incubated in a culture medium for 1, 7, and 30 days at 37°C. Human gingival fibroblasts were exposed to the extracts and cell viability was evaluated by a multi-parametric assay, which allowed sequential analysis of mitochondrial activity (XTT), membrane integrity [neutral red (NR)], and cell density [crystal violet dye exclusion (CVDE)] in the same cells. Analysis of variance (ANOVA) was used to test the interactions of the three sources of variation (material, test method, and time) with the proportions of viable cells for each relining material. Results Both evaluated materials (TDV and TS) had low cytotoxic effects during 1, 7, and 30 days after manipulation of the material, as assessed by all three methods used. A statistical difference was found when comparing the negative control group (latex fragments) with the other groups, which showed high toxicity and low percentage of cell viability in all tests used. There was no significant difference among other materials (p > 0.05). Conclusion Low cytotoxicity levels were detected by representatives of the major groups of temporary prosthetic relining materials, as evaluated by multiple cellular viability parameters in human fibroblasts. Clinical significance There are various soft materials on the market for relining prostheses; however, the effects of these materials on tissues need to be clarified to avoid problems for patients. How to cite this article Caldas IP, Scelza MZ, Gallito MA, Alves G, Silva L. In vitro Analysis of Cytotoxicity of Temporary Resilient Relining Materials. J Contemp Dent Pract 2016;17(6):457-462.


2016 ◽  
Vol 27 (5) ◽  
pp. 492-496 ◽  
Author(s):  
Fabiano Palmeira Gonçalves ◽  
◽  
Gutemberg Alves ◽  
Vladi Oliveira Guimarães Júnior ◽  
Marco Antônio Gallito ◽  
...  

Abstract Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10279
Author(s):  
Kaining Liu ◽  
Bing Han ◽  
Jianxia Hou ◽  
Jianyun Zhang ◽  
Jing Su ◽  
...  

Background Vitamin D 1α-hydroxylase CYP27B1 is the key factor in the vitamin D pathway. Previously, we analyzed the expression of CYP27B1 in human gingival fibroblasts in vitro. In the present study, we analyzed the gingival expression of CYP27B1 in vivo. Methods Forty-two patients with periodontitis Stage IV Grade C and 33 controls were recruited. All patients with periodontitis had unsalvageable teeth and part of the wall of the periodontal pocket was resected and obtained after tooth extraction. All controls needed crown-lengthening surgery, and samples of gingiva resected during surgery were also harvested. All the individuals’ gingivae were used for immunohistochemistry and immunofluorescence. In addition, gingivae from seventeen subjects of the diseased group and twelve subjects of the control group were analyzed by real-time PCR. Results Expression of CYP27B1 was detected both in gingival epithelia and in gingival connective tissues, and the expression in connective tissues colocalized with vimentin, indicating that CYP27B1 protein is expressed in gingival fibroblasts. The expression of CYP27B1 mRNA in gingival connective tissues and the CYP27B1 staining scores in gingival fibroblasts in the diseased group were significantly higher than those in the control group. Conclusions Expression of CYP27B1 in human gingival tissues was detected, not only in the fibroblasts of gingival connective tissues, but also in the gingival epithelial cells, and might be positively correlated with periodontal inflammation.


2012 ◽  
Vol 100A (10) ◽  
pp. 2629-2636 ◽  
Author(s):  
Humberto Osvaldo Schwartz-Filho ◽  
Ana Carolina Faria Morandini ◽  
Erivan Schnaider Ramos-Junior ◽  
Ryo Jimbo ◽  
Carlos Ferreira Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document