scholarly journals Mechanically driven SMR-based NEMS magnetoelectric antennas

Author(s):  
Xianfeng Liang ◽  
Huaihao Chen ◽  
Neville Sun ◽  
Elizaveta Golubeva ◽  
Cai Müller ◽  
...  

Abstract Mechanically driven magnetoelectric (ME) antennas have been demonstrated to be one of the most effective methods to miniaturise antennas compared to state-of-the-art compact antennas. However, the nanoelectromechanical systems (NEMS) ME antennas are fragile due to their suspended thin-film heterostructure, and have very low power handling capabilities. Here we show that solidly mounted resonator (SMR)-based NEMS ME antennas on a Bragg acoustic resonator, which have a circular resonating disk of 200 μm diameters and operate at 1.75 GHz, show a high antenna gain of -18.8 dBi and 1dB compression point (P1dB) of 30.4 dBm. Compared to same-size thin-film bulk acoustic resonator (FBAR) ME antennas with a free-standing membrane, the SMR-based antennas are much more structurally stable with 23.3 dB higher power handling capability and easier fabrication steps. These SMR-based ME antennas are fabricated with processes compatible with complementary metal-oxide-semiconductor (CMOS), exhibiting dramatic size miniaturisation, high power handling, high mechanical robustness, simple fabrication processes, and much higher antenna radiation gain compared to same-size state-of-the-art antennas.

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2259 ◽  
Author(s):  
Cheng Tu ◽  
Zhao-Qiang Chu ◽  
Benjamin Spetzler ◽  
Patrick Hayes ◽  
Cun-Zheng Dong ◽  
...  

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1–2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Younghwan Bae ◽  
Heesauk Jhon ◽  
Junghyun Kim

In this paper, a novel coupler/reflection-type programmable electronic impedance tuner combined with switches that were fabricated by a 0.18-um complementary metal–oxide–semiconductor (CMOS) silicon-on-insulator (SOI) process is proposed for replacement of the conventional mechanical tuner in power amplifier (PA) load-pull test. By employing the multi-stacked field-effect transistors (FETs) as a single-branch switch, the proposed tuner has the advantage of precise impedance variation with systematic and magnitude and phase adjustment. Additionally, it led to high standing wave ratio (SWR) coverage and a good impedance resolution with a high power handling capability. Furthermore, the double-branch based on multi-stacked FET was applied to switches for additional enhancement of the intermodulation distortion (IMD) performance through the mitigated drain-source voltage of the single-FET. Drawing upon the measurement results, we demonstrated that SWR changed from 2 to 6 sequentially with a 12–15° phase angle step over a mid/high-band range of a 1.5–2.1 GHz band for 3G/4G handset application. In addition, the PA load-pull measurement results obtained using the proposed tuners verified their practicality and competitive performance with mechanical tuners. Finally, the measured linearity using the double-branch switch demonstrated the good IMD3 performance of −78 dBc, and this result is noteworthy when compared with conventional electronic impedance tuners.


2006 ◽  
Vol 910 ◽  
Author(s):  
Czang-Ho Lee ◽  
Andrei Sazonov ◽  
Mohammad R. E. Rad ◽  
G. Reza Chaji ◽  
Arokia Nathan

AbstractWe report on directly deposited plasma-enhanced chemical vapor deposition (PECVD) nanocrystalline silicon (nc-Si:H) ambipolar thin-film transistors (TFTs) fabricated at 260 °C. The ambipolar operation is achieved adopting Cr metal contacts with high-quality nc-Si:H channel layer, which creates highly conductive Cr silicided drain/source contacts, reducing both electron and hole injection barriers. The n-channel nc-Si:H TFTs show a field-effect electron mobility (meFE) of 150 cm2/Vs, threshold voltage (VT) ~ 2 V, subthreshold slope (S) ~0.3 V/dec, and ON/OFF current ratio of more than 107, while the p-channel nc-Si:H TFTs show a field-effect hole mobility (mhFE) of 26 cm2/Vs, VT ~ -3.8 V, S ~0.25 V/dec, and ON/OFF current ratio of more than 106. Complementary metal-oxide-semiconductor (CMOS) logic integrated with two ambipolar nc-Si:H TFTs shows reasonable transfer characteristics. The results presented here demonstrate that low-temperature nc-Si:H TFT technology is feasible for total integration of active-matrix TFT backplanes.


Sign in / Sign up

Export Citation Format

Share Document