scholarly journals Ca2+ Participates in Programmed Cell Death by Modulating ROS During Pollen Cryopreservation

Author(s):  
Ruifen Ren ◽  
Hao Zhou ◽  
Lingling Zhang ◽  
Xueru Jiang ◽  
Yan Liu

Abstract Programmed cell death (PCD) is one of the reasons for the decline in pollen viability after cryopreservation. However, the role of calcium ions (Ca2+) in PCD during pollen cryopreservation has not been revealed in the existing studies. In this study, Paeonia lactiflora 'Fen Yu Nu' pollen was used as the research material for investigating the effects of Ca2+ changes on PCD indices and reactive oxygen species (ROS) during pollen cryopreservation. The results showed that after cryopreservation, with the decrease of pollen viability, the Ca2+ content significantly increased. The regulation of Ca2+ content had a significant effect on PCD indices, which showed that the Ca2+ carrier A23187 accelerated the decrease of mitochondrial membrane potential level and increased the activity of caspase-3-like and caspase-9-like proteases and the apoptosis rate. The expression levels of partial pro-PCD genes were upregulated, the anti-PCD gene BI-1 was downregulated, and the addition of Ca2+ chelating agent EGTA had the opposite effect. The addition of the Ca2+ carrier A23187 after cryopreservation significantly increased the ROS content of pollen, the addition of the Ca2+ chelating agent EGTA had the opposite effect, and Ca2+ regulators also had significant effects on the contents of ROS production and clearance-related substances. Ca2+ affected intracellular ROS content by acting on the ROS production and clearance system during the cryopreservation of pollen and is thus involved in the occurrence of PCD.

2021 ◽  
Author(s):  
Ruifen Ren ◽  
Hao Zhou ◽  
Lingling Zhang ◽  
Mengting Zhu ◽  
Xueru Jiang ◽  
...  

Abstract Low activity level of biomaterials after cryopreservation is a bottleneck problem that limited the application of this technology. At present, the mechanism of viability decline after cryopreservation is not fully understood. In this study, the effects of nitric oxide (NO) on programmed cell death (PCD) and its relationship with viability were investigated, using Paeonia lactiflora 'Fen Yu Nu' pollen with significantly decreased viability after cryopreservation. The results showed that: the activity of caspase-3-like and caspase-9-like protease and the apoptosis rate of pollen cells were significantly increased, the expression level of promoting PCD (pro-PCD) gene was up-regulated, while the expression level of inhibiting PCD (anti-PCD) gene was down-regulated after preserved in liquid nitrogen (LN); the NO content in pollen cells increased significantly after LN preserved. The results of correlation analysis showed that NO was significantly correlated with pollen viability and all indicators of PCD. The addition of NO carrier SNP after LN storage reduced pollen viability, increased endogenous NO content, decreased mitochondrial membrane potential level, activated caspase-3-like and caspase-9-like protease in pollen cells, and increased cell apoptosis rate, and the expression levels of pro-PCD genes PDCD2 and ATG8CL were significantly up-regulated, while the expression levels of anti-PCD genes DAD1, BI-1 and LSD1 were significantly down-regulated; and the addition of NO scavenger c-PTIO produced the opposite effect of SNP. It was suggested that NO induced the PCD during the cryopreservation of pollen, which was one of the reasons for the significant decrease of pollen viability after cryopreservation.


Author(s):  
Lifang Zhang ◽  
Yu Zhao ◽  
Quanmei Tu ◽  
Xiangyang Xue ◽  
Xueqiong Zhu ◽  
...  

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signaling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and MicroRNAs, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in immune escape of cervical cancer through inhibition of host immune response. creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PD-L1/PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight the cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.


2003 ◽  
Vol 133 (3) ◽  
pp. 1122-1134 ◽  
Author(s):  
Stefania Pasqualini ◽  
Claudia Piccioni ◽  
Lara Reale ◽  
Luisa Ederli ◽  
Guido Della Torre ◽  
...  

2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

Blood ◽  
2013 ◽  
Vol 121 (5) ◽  
pp. 734-744 ◽  
Author(s):  
Paul Greaves ◽  
John G. Gribben

AbstractThe B7 family consists of structurally related, cell-surface proteins that regulate immune responses by delivering costimulatory or coinhibitory signals through their ligands. Eight family members have been identified to date including CD80 (B7-1), CD86 (B7-2), CD274 (programmed cell death-1 ligand [PD-L1]), CD273 (programmed cell death-2 ligand [PD-L2]), CD275 (inducible costimulator ligand [ICOS-L]), CD276 (B7-H3), B7-H4, and B7-H6. B7 ligands are expressed on both lymphoid and nonlymphoid tissues. The importance of the B7 family in regulating immune responses is clear from their demonstrated role in the development of immunodeficiency and autoimmune diseases. Manipulation of the signals delivered by B7 ligands shows great potential in the treatment of cancers including leukemias and lymphomas and in regulating allogeneic T-cell responses after stem cell transplantation.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Sign in / Sign up

Export Citation Format

Share Document