scholarly journals Influence of Natural Serpentine on the Tribological Performance of Phosphate Bonded Solid Coatings

Author(s):  
Zhengchao Xi ◽  
Jianbo Sun ◽  
Lei Chen ◽  
Haixia Cui ◽  
Yanjun Ma ◽  
...  

Abstract Natural serpentine powders were incorporated into phosphate bonded solid coatings to promote the anti-wear performance of the phosphate coatings. Optimal mass percent of natural serpentine in phosphate coatings was firstly explored. Thereafter, in order to stimulate layer slip of natural serpentine and strengthen interfacial interaction between natural serpentine and counterface during the friction process, tribological performance of the composite coatings under different friction condition was properly investigated. The experimental result indicated that the optimal incorporation of natural serpentine in phosphate coatings was 10 wt.%, through which anti-wear performance of phosphate coatings was significantly elevated. Additionally, accompanied by the increase of applied load and sliding speed, natural serpentine was activated by friction force and local friction heat, and simultaneously interfacial interactions between naturals serpentine and counterface were intensified. As a result, a continuous protective tribo-film was in-situ formed on the counterface, through which anti-wear performance of phosphate coatings were significantly promoted. At the same time, serious furrows generated on the counterface were also effectively self-repaired during the friction process, and further abrasion on the counterface was greatly restrained.

2010 ◽  
Vol 152-153 ◽  
pp. 580-586
Author(s):  
Zheng Xi Hu ◽  
Xiao Hua Jie ◽  
Guo Hui Lu

Multi-walled carbon nanotube (MWCNT)/Pb-Sn composite coatings were prepared by electrodeposition technique. Friction coefficient and wear weight losses were investigated on a double rings apparatus using carbon steel (C: 0.45%) rings as counterparts under wet friction condition. Tribological characteristics were compared among the samples as carbon nanotubes concentration was changed in the bath. The results indicate that the composite coatings had smaller friction coefficient and weight loss than that of ordinary Pb-Sn coatings under the same work conditions. In addition, the wear performance of Pb-Sn-CNTs composite coating was optimized when the CNTs concentration in bath was 2 g L-1.


2008 ◽  
Author(s):  
Ruiquan Kang ◽  
Mingxing Ma ◽  
Wenjin Liu ◽  
Minlin Zhong ◽  
Yide Kan ◽  
...  

2016 ◽  
Vol 10 (2) ◽  
pp. 119-126
Author(s):  
Mahlinda Mahlinda ◽  
Fitriana Djafar

The main purpose of this research was to observer effect co-solvent type (n-Hexane, chloroform and without co-solvent)  toward yield and quality of biodiesel via in situ transesterification process using microwave irradiation. The process was studied at microwave power 450 watt, reaction time 4 minutes, methanol to seed ratio 25:1 and catalyst concentration 5%. The physicochemical parameters of the biodiesel produced such as viscosity, density and acid value were analysed and compared with the SNI 7182-2012 standard. The experimental result showed the maximum yield biodiesel 78,32% obtained by using co-solvent chloroform.Test result of physicochemical properties (viscosity, density and acid value) of biodiesel products using co solvent n-Hexane, chloroform and without co solvent showed that these products conform to the SNI 7182-2012 standars. The type of co-solvent only affectedon biodiesel yield dan not affected on biodiesel quality (viscosity, density and acid value).  ABSTRAKTujuan penelitian ini adalah untuk mempelajari pengaruh jenis co-solvent (n-Hexane, chloroform dan tanpa co-solvent) terhadap rendemen dan mutu biodiesel secara trasesterifikasi in situ menggunakan radiasi gelombang mikro. Proses dilakukan pada daya gelombang mikro 450 watt, waktu reaksi 4 menit, perbandingan berat metanol terhadap bahan baku 25:1 dan jumlah katalis 5%. Parameter fisiko kimia dari produk biodiesel seperti viskositas, densitas dan angka asam di analisa dan dibandingkan dengan standar SNI 7182-2012 tentang biodiesel. Hasil penelitian menunjukkan rendemen maksimum biodiesel sebesar 78,32% diperoleh dengan menggunakan co-solvent chloroform. Hasil pengujian  karakteristik fisiko kimia (viskositas, densitas dan angka asam) dari produk biodiesel menggunakan co-solvent n-Hexane, chloroform dan tanpa co-solvent menunjukkan bahwa semua parameter ini masih memenuhi standar SNI 1782-2012 tentang biodiesel. Jenis co-solvent hanya berpengaruh pada rendemen biodiesel dan tidak berpengaruh terhadap mutu biodiesel (viskositas, densitas dan bilangan asam).Kata kunci: co-solvent, in situ transesterifikasi, microwave, rendemen, mutu   


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
R. Keshavamurthy ◽  
B. E. Naveena ◽  
C. S. Ramesh ◽  
M. R. Haseebuddin

Author(s):  
Waleed Al-Sallami ◽  
Pourya Parsaeian ◽  
Abdel Dorgham ◽  
Anne Neville

Trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate (phosphonium phosphate) ionic liquid is soluble in non-polar lubricants. It has been proposed as an effective anti-wear additive comparable to zinc dialkyldithiophosphate. Previously, phosphonium phosphate has shown a better anti-wear performance under some conditions such as high temperature. In this work, the tribological performance and the lubrication mechanism of phosphonium phosphate are compared with that of zinc dialkyldithiophosphate when lubricating silicon under various tribological conditions. This can lead to an understanding of the reasons behind the superior anti-wear performance of phosphonium phosphate under some conditions. A micro-scale study is conducted using a nanotribometer. The results show that both additives lead to a considerable reduction in both friction and wear coefficients. The reduction in the wear coefficient is mainly controlled by the formation of the tribofilm on the rubbing surfaces. Zinc dialkyldithiophosphate can create a thicker tribofilm, which results in a better anti-wear performance. However, the formation of a thicker film will lead to a faster depletion and thus phosphonium phosphate can provide better anti-wear performance when the depletion of zinc dialkyldithiophosphate starts.


2021 ◽  
Vol 63 (7) ◽  
pp. 630-638
Author(s):  
Mustafa Kaptanoglu ◽  
Mehmet Eroglu

Abstract In the study for this contribution, production of in situ synthesized TiB2 particles in iron-based composite coatings using four different submerged arc welding powders (fluxes) containing increasing amounts of ferrotitanium and ferroboron with S1 welding wire, were targeted. For this purpose, coating deposition was carried out to improve the hardness and wear properties of the AISI 1020 steel surfaces using hybrid submerged arc welding. In hybrid submerged arc welding, the welding pool is protected by both welding powders and an argon gas atmosphere. To examine the composite coatings, visual, chemical, microstructural analyses and hardness and wear tests were carried out. With the use of increasing amounts of ferrotitanium and ferroboron in the welding powders, it was observed that the microstructure of the coatings changed in terms of TiB2 particle geometries such as rectangular and hexagonal; volume fractions of TiB2 particles in the coating microstructures increased; hardness values of coatings were enhanced from 34 HRC to 41 HRC; the wear resistance of the coatings improved, and worn surface images of the coatings caused by the counter body changed from continuous with deep scratches to discontinuous with fine scratches and crater cavities.


Sign in / Sign up

Export Citation Format

Share Document