Development of electroless composite coatings by using in-situ co-precipitation followed by co-deposition process

2005 ◽  
Vol 36 (1) ◽  
pp. 23-31 ◽  
Author(s):  
S. B. Sharma ◽  
R. C. Agarwala ◽  
V. Agarwala ◽  
K. G. Satyanarayana
2015 ◽  
Vol 228 ◽  
pp. 125-131
Author(s):  
B. Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Popczyk

The object of this work was to obtain the Ni+MoS2composite electrocoatings byin situco-deposition of molybdenum (IV) sulfide particles (< 2 μm) and nickel from a suspension plating bath. Physical and chemical characterization of the coatings was carried out using SEM, EDS, and XRD methods. The chemical composition of these coatings of a diphase structure (Ni, MoS2) was found to be dependent on the current density and temperature of electrodeposition. The optimal electrochemical conditions for embedding of the maximum amount of 26.4 wt.% of MoS2into the crystalline nickel matrix, were experimentally determined. The co-deposition process of MoS2particles and metallic nickel was discussed based on the adsorption mechanism. Such porous Ni+MoS2composite coatings can be proposed as electrode material for hydrogen electroevolution.


2008 ◽  
Author(s):  
Ruiquan Kang ◽  
Mingxing Ma ◽  
Wenjin Liu ◽  
Minlin Zhong ◽  
Yide Kan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


2017 ◽  
Vol 9 (4) ◽  
pp. 421-429
Author(s):  
S. S. Bristy ◽  
H. Ahmad

The nanocomposite particles named as ?-Al2O3/Fe3O4/SiO2/poly(glycidyl methacrylate) or ?-Al2O3/Fe3O4/SiO2/PGMA were prepared by multi-step process. At first, ?- Al2O3 nanoparticles were prepared by sol-gel method. Magnetite, Fe3O4, nanoparticles were then precipitated by in situ co-precipitation in presence of ?-Al2O3 particles, followed by incorporation of mesoporous silica layer using Stöber process. Finally, the surface of the ?-Al2O3/Fe3O4/SiO2 nanocomposite particles was modified by seeded polymerization of GMA using free radical polymerization. The surface modification, morphology and size distribution of the prepared nanocomposite particles were confirmed by FTIR, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The adsorption capacity of ?-Al2O3/Fe3O4/SiO2/PGMA nanocomposite particles was evaluated using remazol navy RGB (RN-RGB) as a model dye.


2021 ◽  
Vol 63 (7) ◽  
pp. 630-638
Author(s):  
Mustafa Kaptanoglu ◽  
Mehmet Eroglu

Abstract In the study for this contribution, production of in situ synthesized TiB2 particles in iron-based composite coatings using four different submerged arc welding powders (fluxes) containing increasing amounts of ferrotitanium and ferroboron with S1 welding wire, were targeted. For this purpose, coating deposition was carried out to improve the hardness and wear properties of the AISI 1020 steel surfaces using hybrid submerged arc welding. In hybrid submerged arc welding, the welding pool is protected by both welding powders and an argon gas atmosphere. To examine the composite coatings, visual, chemical, microstructural analyses and hardness and wear tests were carried out. With the use of increasing amounts of ferrotitanium and ferroboron in the welding powders, it was observed that the microstructure of the coatings changed in terms of TiB2 particle geometries such as rectangular and hexagonal; volume fractions of TiB2 particles in the coating microstructures increased; hardness values of coatings were enhanced from 34 HRC to 41 HRC; the wear resistance of the coatings improved, and worn surface images of the coatings caused by the counter body changed from continuous with deep scratches to discontinuous with fine scratches and crater cavities.


Sign in / Sign up

Export Citation Format

Share Document