Micro-structural and compositional study: ε-Fe2O3 crystals in the Hare’s Fur Jian Ware

Author(s):  
Shiqian Tao ◽  
Song Liu ◽  
Yimeng Yuan ◽  
Junqing Dong ◽  
Qing-Hui Li

Abstract The Jian kilns in the present-day Jianyang county of Fujian province are well-known as their thick and lustrous black-glazed porcelain production. The hare’s fur (HF) glazed Jian wares characterized by radial fur-like strips, as one of the most typical representatives of black-glazed tea bowls, are originated from phase separation of glaze melt and crystallization of iron oxides. In this work, various techniques were performed on the yellowish-brown HF samples, including portable energy-dispersive X-ray fluorescence (PXRF), synchrotron X-ray absorption near-edge spectroscopy (XANES), optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy (RS). The objective of this study was to well understand the microstructure characteristics and chemical compositions of glaze patterns. Results showed that the main constituents of the ceramic glaze were alumina (10.61-16.43 wt.%), silica (62.20-77.07 wt.%), calcium (3.85-6.97 wt.%) and iron oxide (4.10-8.35 wt.%). The studies evidenced that the presence of metastable epsilon-hematite crystals (ε-Fe2O3) formed on the brownish yellow glazed surface. Microstructural analysis revealed that there were three types of crystal structures in the glaze surface, one consisted of well-grown leaf-like or dendritic-like structure with highly ordered branches at micrometers scales, one was comprised of flower-like clusters accompanied by branches radiating from the center, petals growing along the branches and needles on both sides of the petals, and the last embraced a honeycomb structure tightly packed with plentiful spherical or irregular-shaped particles. In addition, ε-Fe2O3 crystals in the cross-section of glaze showed a gradient distribution.

2001 ◽  
Vol 678 ◽  
Author(s):  
Yanan Xiao ◽  
Tim Graber ◽  
Myungae Lee ◽  
Dale E. Wittmer ◽  
Susan M. Mini

AbstractThe residual-stress-gradient distribution just below the surface of a material is an important factor to consider during the engineering and design of a component. With the availability of an intense energy-tunable synchrotron x-ray source, it becomes easier to analyze the stress gradient below the surface, using a multi-energy x-ray diffraction method. A program was developed to efficiently determine possible experimental parameters using a sample with a known stress gradient distribution. In addition, this program can also calculate the stress gradient distribution below the surface taking into account experimental results. It also includes a subroutine for calculating the x-ray absorption coefficients of all of the elements, generalizing it for use with any material. As an example, in the present study, the relationship between x-ray energy and the residual stress gradient is discussed according to the calculated result for a silicon nitride composition.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2009 ◽  
Vol 1193 ◽  
Author(s):  
B. L. Metcalfe ◽  
S. K. Fong ◽  
L. A. Gerrard ◽  
I. W. Donald ◽  
E. S. Welch ◽  
...  

AbstractThe choice of surrogate for plutonium oxide for use during the initial stages of research into the immobilization of intermediate level pyrochemical wastes containing plutonium andamericium oxides in a calcium phosphate host has been investigated by powder X-ray diffraction and X-ray absorption spectroscopy. Two non-radioactive surrogates, hafnium oxide and cerium oxide, together with radioactive thorium oxide were compared. Similarities in behaviour were observed for all three surrogates when calcined at the lowest temperature, 750°C but differences became more pronounced as the calcination temperature was increased to 950°C. Although some reaction occurred between all the surrogates and the host to form a substituted whitlockite phase, increasing the temperature led to a significant increase in the cerium reaction and the formation of an additional phase, monazite. Additionally it was observed that the cerium became increasingly trivalent at higher temperatures.


1997 ◽  
Vol 496 ◽  
Author(s):  
Yair Ein-Eli ◽  
W. F. Howard ◽  
Sharon H. Lu ◽  
Sanjeev Mukerjee ◽  
James McBreen ◽  
...  

ABSTRACTA series of electroactive spinel compounds, LiMn2-xCuxO4 (0.1 ≤ x ≤ 0.5) has been studied by crystallographic, spectroscopie and electrochemical methods and by electron-microscopy. These LiMn2-xCuxO4 spinels are nearly identical in structure to cubic LiMn2O4 and successfully undergo reversible Li intercalation. The electrochemical data show slight shifts to higher voltage for the delithiation reaction that normally occurs at 4.1 V in standard Li1−xMn2O4 electrodes (1 ≥ x ≥ 0) corresponding to the oxidation of Mn3+ to Mn4+. The data also show a remarkable reversible electrochemical process at 4.9 V which is attributed to the oxidation of Cu2+ to Cu3+. The inclusion of Cu in the spinel structure enhances the electrochemical stability of these materials upon cycling. The initial capacity of LiMn2-xCuxO4 spinels decreases with increasing x from 130 mAh/g in LiMn2O4 (x=0) to 70 mAh/g in “LiMn1.5Cu0.5O4”(x=0.5). Although the powder X-ray diffraction pattern of “LiMn1.5Cu0.5 O4” shows a single-phase spinel product, neutron diffraction data show a small, but significant quantity of an impurity phase, the composition and structure of which could not be identified. X-ray absorption spectroscopy was used to gather information about the oxidation states of the manganese and copper ions. The composition of the spinel component in the LiMn1.5Cu0.5O4 was determined from X-ray diffraction and XANES data to be Li1.01Mn1.67Cu0.32O4 suggesting, to a best approximation, that the impurity in the sample was a lithium-copper-oxide phase.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


Sign in / Sign up

Export Citation Format

Share Document