scholarly journals Applying Different Chemical Methods to Develop an Efficient Acellular Rat Uterine Tissue Matrix

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.

2021 ◽  
Author(s):  
Masoomeh Masoomikarimi ◽  
Samira Rajaei ◽  
Farshid Noorbakhsh ◽  
Majid Salehi

Abstract Purpose: Decellularized uterine scaffold, as a new achievement in tissue engineering, permits recellularization and regeneration of uterine tissues and supports pregnancy in a fashion comparable to the intact uterus. The main purpose of this study was using of different chemical methods to introduce an optimized protocol for decellularization of rat uterus.Method: We decellularized rat uteruses by four different protocols using sodium dodecyl sulfate (SDS) and triton-X100 with different doses and time incubations.We characterized the scaffolds through histopathological staining, DNA quantification, MTT assay, Blood compatibility assay, Field Emission Scanning Electron Microscopy (FESEM), and biomechanical studies.Results: Histology assessment showed that only in protocol 4, cell residues were completely removed. Masson’s trichrome staining demonstrates that in protocol P3 collagen bundles were decreased; however, no damage in the collagen bundles was observed by other protocols. Cell viabilities indirect MTT assays of all protocols were significantly higher than the native samples. The RBC hemolysis percent in the presence of prepared scaffolds from all 4 protocols was less than 2%. The mechanical properties of none of the protocols were significantly different from the native sample. Conclusion: Protocol 4 which used freeze-thawing before using detergent, was introduced as the optimized protocol due to complete removal of cell residue, preservation of the three-dimensional structure, complete removal of detergents, and preservation of the mechanical property of the scaffolds.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


1979 ◽  
Vol 41 (04) ◽  
pp. 718-733 ◽  
Author(s):  
Preben Kok

SummaryThree types of plasminogen activator could be distinguished in extracts from human uterine tissue. The activators differed in thermostability or in mode of inhibition by EACA.All the extracts contained stable as well as labile activators. The saline extracts were uniformly inhibited by increasing concentrations of EACA. Extracts made with 2 M ammonium thiocyanate were either uniformly inhibited by EACA or showed deflections indicating contamination with an activator, which was inhibited in a biphasic manner. It was possible to distinguish between: (1) An activator, abundantly present in the tissue, which was uniformly inhibited and stable. (2) Another uniformly inhibited activator, which was labile. (3) An activator, inhibited in a biphasic manner, similar to urokinase, which was present in varying amounts in uteri with the endometrium in the proliferative phase.Gel filtration of the uterine extracts showed two major activity peaks corresponding to particle sizes of 60,000 dalton and about 10,000 dalton.Antiserum to purified plasminogen activator, prepared from porcine ovaries, inhibited the activity of the human uterine extracts, but not the activities of human urokinase or urine. Urokinase antiserum in a concentration completely inhibiting human urine or urokinase, inhibited only 10% or less of the activities of human uterine extracts.


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


1998 ◽  
pp. 46-52
Author(s):  
S. V. Rabotkina

A huge place in the spiritual life of medieval Rusich was occupied by the Bible, although for a long time Kievan Rus did not know it fully. The full text of the Holy Scriptures appears in the Church Slavonic language not earlier than 1499.


IIUC Studies ◽  
1970 ◽  
Vol 3 ◽  
pp. 78-63
Author(s):  
S Islam Shauk
Keyword(s):  

The full text of this article is in Arabic - see PDF below. doi: 10.3329/iiucs.v3i0.2675   IIUC STUDIES Vol. - 3, December 2006 (p 63-78).


Sign in / Sign up

Export Citation Format

Share Document