scholarly journals Sensitivity of A Frequency-Based Alignment-Free Approach For Phylogeny Rreconstruction.

Author(s):  
Yana Hrytsenko ◽  
Noah M. Daniels ◽  
Rachel S. Schwartz

Abstract Background: Phylogenies enrich our understanding of how genes, genomes, and species evolve. Traditionally, alignment-based methods are used to construct phylogenies from genetic sequence data; however, this process can be time-consuming when analyzing the large amounts of genomic data available today. Additionally, these analyses face challenges due to differences in genome structure, synteny, and the need to identify similarities in the face of repeated substitutions resulting in loss of phylogenetic information contained in the sequence. Alignment Free (AF) approaches using k-mers (short subsequences) can be an efficient alternative due to their indifference to positional rearrangements in a sequence. However, these approaches may be sensitive to k-mer length and the distance between samples.Results: In this paper, we analyzed the sensitivity of an AF approach based on k-mer frequencies to these challenges using cosine and Euclidean distance metrics for both assembled genomes and unassembled sequencing reads. Quantification of the sensitivity of this AF approach for phylogeny reconstruction to branch length and k-mer length provides a better understanding of the necessary parameter ranges for accurate phylogeny reconstruction. Our results show that a frequency-based AF approach can result in accurate phylogeny reconstruction when using whole genomes, but not stochastically sequenced reads, so long as longer k-mers are used. Conclusions: In this study, we have shown an AF approach for phylogeny reconstruction is robust in analyzing assembled genome data for a range of numbers of substitutions using longer k-mers. Using simulated reads randomly selected from the genome by the Illumina sequencer had a detrimental effect on phylogeny estimation. Additionally, filtering out infrequent k-mers improved the computational efficiency of the method while preserving the accuracy of the results thus suggesting the feasibility of using only a subset of data to improve computational efficiency in cases where large sets of genome-scale data are analyzed.

GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Taras K Oleksyk ◽  
Walter W Wolfsberger ◽  
Alexandra M Weber ◽  
Khrystyna Shchubelka ◽  
Olga T Oleksyk ◽  
...  

Abstract Background The main goal of this collaborative effort is to provide genome-wide data for the previously underrepresented population in Eastern Europe, and to provide cross-validation of the data from genome sequences and genotypes of the same individuals acquired by different technologies. We collected 97 genome-grade DNA samples from consented individuals representing major regions of Ukraine that were consented for public data release. BGISEQ-500 sequence data and genotypes by an Illumina GWAS chip were cross-validated on multiple samples and additionally referenced to 1 sample that has been resequenced by Illumina NovaSeq6000 S4 at high coverage. Results The genome data have been searched for genomic variation represented in this population, and a number of variants have been reported: large structural variants, indels, copy number variations, single-nucletide polymorphisms, and microsatellites. To our knowledge, this study provides the largest to-date survey of genetic variation in Ukraine, creating a public reference resource aiming to provide data for medical research in a large understudied population. Conclusions Our results indicate that the genetic diversity of the Ukrainian population is uniquely shaped by evolutionary and demographic forces and cannot be ignored in future genetic and biomedical studies. These data will contribute a wealth of new information bringing forth a wealth of novel, endemic and medically related alleles.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Tao Liu ◽  
Yutong Cui ◽  
Xuli Jia ◽  
Jing Zhang ◽  
Ruoran Li ◽  
...  

Abstract Algae are the oldest taxa on Earth, with an evolutionary relationship that spans prokaryotes (Cyanobacteria) and eukaryotes. A long evolutionary history has led to high algal diversity. Their organelle DNAs are characterized by uniparental inheritance and a compact genome structure compared with nuclear genomes; thus, they are efficient molecular tools for the analysis of gene structure, genome structure, organelle function and evolution. However, an integrated organelle genome database for algae, which could enable users to both examine and use relevant data, has not previously been developed. Therefore, to provide an organelle genome platform for algae, we have developed a user-friendly database named Organelle Genome Database for Algae (OGDA, http://ogda.ytu.edu.cn/). OGDA contains organelle genome data either retrieved from several public databases or sequenced in our laboratory (Laboratory of Genetics and Breeding of Marine Organism [MOGBL]), which are continuously updated. The first release of OGDA contains 1055 plastid genomes and 755 mitochondrial genomes. Additionally, a variety of applications have been integrated into this platform to analyze the structural characteristics, collinearity and phylogeny of organellar genomes for algae. This database represents a useful tool for users, enabling the rapid retrieval and analysis of information related to organellar genomes for biological discovery.


2019 ◽  
Author(s):  
Kenta Shirasawa ◽  
Akifumi Azuma ◽  
Fumiya Taniguchi ◽  
Toshiya Yamamoto ◽  
Akihiko Sato ◽  
...  

AbstractThis study presents the first genome sequence of an interspecific grape hybrid, ‘Shine Muscat’ (Vitis labruscana × V. vinifera), an elite table grape cultivar bred in Japan. The complexity of the genome structure, arising from the interspecific hybridization, necessitated the use of a sophisticated genome assembly pipeline with short-read genome sequence data. The resultant genome assemblies consisted of two types of sequences: a haplotype-phased sequence of the highly heterozygous genomes and an unphased sequence representing a “haploid” genome. The unphased sequences spanned 490.1 Mb in length, 99.4% of the estimated genome size, with 8,696 scaffold sequences with an N50 length of 13.2 Mb. The phased sequences had 15,650 scaffolds spanning 1.0 Gb with N50 of 4.2 Mb. The two sequences comprised 94.7% and 96.3% of the core eukaryotic genes, indicating that the entire genome of ‘Shine Muscat’ was represented. Examination of genome structures revealed possible genome rearrangements between the genomes of ‘Shine Muscat’ and a V. vinifera line. Furthermore, full-length transcriptome sequencing analysis revealed 13,947 gene loci on the ‘Shine Muscat’ genome, from which 26,199 transcript isoforms were transcribed. These genome resources provide new insights that could help cultivation and breeding strategies produce more high-quality table grapes such as ‘Shine Muscat’.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 261 ◽  
Author(s):  
Yongfu Li ◽  
Steven Paul Sylvester ◽  
Meng Li ◽  
Cheng Zhang ◽  
Xuan Li ◽  
...  

Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ting Hon ◽  
Kristin Mars ◽  
Greg Young ◽  
Yu-Chih Tsai ◽  
Joseph W. Karalius ◽  
...  

AbstractThe PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10–25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.


Genome ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 341-347 ◽  
Author(s):  
Leigh Minuk ◽  
Alberto Civetta

The recent completion of genome sequencing of 12 species of Drosophila has provided a powerful resource for hypothesis testing, as well as the development of technical tools. Here we take advantage of genome sequence data from two closely related species of Drosophila, Drosophila simulans and Drosophila sechellia, to quickly identify candidate molecular markers for genotyping based on expected insertion or deletion (indel) differences between species. Out of 64 candidate molecular markers selected along the second and third chromosome of Drosophila, 51 molecular markers were validated using PCR and gel electrophoresis. We found that the 20% error rate was due to sequencing errors in the genome data, although we cannot rule out possible indel polymorphisms. The approach has the advantage of being affordable and quick, as it only requires the use of bioinformatics tools for predictions and a PCR and agarose gel based assay for validation. Moreover, the approach could be easily extended to a wide variety of taxa with the only limitation being the availability of complete or partial genome sequence data.


2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Sriram P. Chockalingam ◽  
Jodh Pannu ◽  
Sahar Hooshmand ◽  
Sharma V. Thankachan ◽  
Srinivas Aluru

Abstract Background Alignment-free methods for sequence comparisons have become popular in many bioinformatics applications, specifically in the estimation of sequence similarity measures to construct phylogenetic trees. Recently, the average common substring measure, ACS, and its k-mismatch counterpart, ACSk, have been shown to produce results as effective as multiple-sequence alignment based methods for reconstruction of phylogeny trees. Since computing ACSk takes O(n logkn) time and hence impractical for large datasets, multiple heuristics that can approximate ACSk have been introduced. Results In this paper, we present a novel linear-time heuristic to approximate ACSk, which is faster than computing the exact ACSk while being closer to the exact ACSk values compared to previously published linear-time greedy heuristics. Using four real datasets, containing both DNA and protein sequences, we evaluate our algorithm in terms of accuracy, runtime and demonstrate its applicability for phylogeny reconstruction. Our algorithm provides better accuracy than previously published heuristic methods, while being comparable in its applications to phylogeny reconstruction. Conclusions Our method produces a better approximation for ACSk and is applicable for the alignment-free comparison of biological sequences at highly competitive speed. The algorithm is implemented in Rust programming language and the source code is available at https://github.com/srirampc/adyar-rs.


Sign in / Sign up

Export Citation Format

Share Document