indel polymorphisms
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Lin Zhang ◽  
Zhendong Zhu ◽  
Weian Du ◽  
Shengbin Li ◽  
Changhui Liu

Insertion/deletion (InDel) polymorphisms, as ideal forensic markers, show useful characteristics of both SNPs and STRs, such as low mutation rate, short amplicon size and general applicability of genotyping platform, and have been used in human identification, population genetics and biogeographic research in recent years. X-chromosome genetic markers are significant in population genetic studies and indispensable complements in some complex forensic cases. However, the population genetic studies of X-chromosome InDel polymorphisms (X-InDels) still need to be explored. In this study, the forensic utility of a novel panel including 38 X-InDel markers was evaluated in a sample of Han population from Henan province in China. It is observed that the heterozygosities ranged from 0.0054 to 0.6133, and the combined discrimination power was 1–9.18 × 10−17 for males and 1–7.22 × 10−12 for females respectively. The mean exclusion chance in trios and duos were 0.999999319 and 0.999802969 respectively. Multiple biostatistics methods, such as principal component analysis, genetic distances analysis, phylogenetic reconstruction, and structure analysis was used to reveal the genetic relationships among the studied Henan Han group and other 26 reference groups from 1,000 Genomes Project. As expected, the Henan Han population was clustered with East Asian populations, and the most intimate genetic relationships existed in three Han Chinese populations from Henan, Beijing and South China, and showed significant differences compared with other continental groups. These results confirmed the suitability of the 38 X-InDel markers both in individual identification and parentage testing in Han Chinese population, and simultaneously showed the potential application in population genetics.


2021 ◽  
Vol 21 (03) ◽  
Author(s):  
S. M. S. Chahal

ABSTRACT The genetic constitution of two endogamous caste populations viz., the Brahmin (n=250) and Rajput (n=250) of Kangra district of the North Indian state of Himachal Pradesh was studied using six autosomal Alu InDel (insertion/deletion) markers viz., ACE, APO, PV92, CD4, PLAT, and TPA25 All markers were found to be polymorphic. Except for Alu APO and PV92 in the Rajput, genotype frequencies of other markers were in the Hardy-Weinberg equilibrium in both the populations. The average heterozygosity (H) was observed higher in the Brahmin (0.4134) compared to the Rajput (0.3809) and the degree of genic differentiation was low between them (GST =0.00898). The genetic distance analysis revealed close genetic affinities of the present Rajput population with the Gaddi Rajput and Gaddi Brahmin populations reported earlier from the district but the present Brahmin population was found distant from them.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gen Pan ◽  
Zheng Li ◽  
Siqi Huang ◽  
Jie Tao ◽  
Yaliang Shi ◽  
...  

Abstract Background Cannabis sativa L., a dioecious plant derived from China, demonstrates important medicinal properties and economic value worldwide. Cannabis properties have been usually harnessed depending on the sex of the plant. To analyse the genetic structure of Chinese Cannabis and identify sex-linked makers, genome-wide insertion-deletion (InDel) markers were designed and used. Results In this study, a genome-wide analysis of insertion-deletion (InDel) polymorphisms was performed based on the recent genome sequences. In total, 47,558 InDels were detected between the two varieties, and the length of InDels ranged from 4 bp to 87 bp. The most common InDels were tetranucleotides, followed by pentanucleotides. Chromosome 5 exhibited the highest number of InDels among the Cannabis chromosomes, while chromosome 10 exhibited the lowest number. Additionally, 31,802 non-redundant InDel markers were designed, and 84 primers evenly distributed in the Cannabis genome were chosen for polymorphism analysis. A total of 38 primers exhibited polymorphisms among three accessions, and of the polymorphism primers, 14 biallelic primers were further used to analyse the genetic structure. A total of 39 fragments were detected, and the PIC value ranged from 0.1209 to 0.6351. According to the InDel markers and the flowering time, the 115 Chinese germplasms were divided into two subgroups, mainly composed of cultivars obtained from the northernmost and southernmost regions, respectively. Additional two markers, “Cs-I1–10” and “Cs-I1–15”, were found to amplify two bands (398 bp and 251 bp; 293 bp and 141 bp) in the male plants, while 389-bp or 293-bp bands were amplified in female plants. Using the two markers, the feminized and dioecious varieties could also be distinguished. Conclusion Based on the findings obtained herein, we believe that this study will facilitate the genetic improvement and germplasm conservation of Cannabis in China, and the sex-linked InDel markers will provide accurate sex identification strategies for Cannabis breeding and production.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Ky Huynh ◽  
Giang Van Quoc ◽  
Tung Nguyen Chau Thanh ◽  
Hien Nguyen Loc ◽  
Vo Cong Thanh

Recently, a new technology, Next-generation sequencing (NGS) has been launched and providing whole-genome sequences that helps identify molecular markers across the genome. DNA markers such as single nucleotides and insertion – deletion (InDel) polymorphisms were widely used for plant breeding particularly to distinguish important traits in rice. These PCR-based markers can be used for the precision detection of polymorphisms. Moreover, PCR-based approaches are simple and effective methods for dealing with the issue of fraudulent labeling and adulteration in the global rice industry. In this study, three local varieties of Oryza sativa L. in Vietnam were sequenced with up to ten times genome depth and at least four times coverage (~83%) using the Illumina HiSeq2000™ system, with an average of 6.5 GB clean data per sample, generated after filtering low-quality data. The data was approximately mapped up to 95% to the reference genome IRGSP 1.0. The results obtained from this study will contribute to a wide range of valuable information for further investigation into this germplasm.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1579
Author(s):  
Jianing Zhao ◽  
Jie Li ◽  
Fugui Jiang ◽  
Enliang Song ◽  
Xianyong Lan ◽  
...  

There is an urgent need to improve bovine fertility, and molecular marker-assisted selection (MAS) can accelerate this process. Genome-wide association studies suggest that Integrin β5 (ITGβ5) might affect fertility in bovines. As a member of the integrins family, ITGβ5 can bind to the extracellular matrix and mediate various cellular processes. In our study, primers spanning six potential insertion/deletion (indel) polymorphisms within the ITGβ5 gene were designed and 696 ovary samples from different individuals, the vast majority not in oestrum were collected for genetic variation detection. A deletion locus, rs522759246, namely P1-D13-bp, was found to be polymorphic. The allele D frequency was 0.152 and the polymorphism information content (PIC) value was 0.224, indicating a low-degree PIC. This locus did not follow the Hardy–Weinberg equilibrium (p = 1.200E-23). Importantly, associations between P1-D13-bp and ovarian morphological traits were established. Polymorphisms of this locus had significant correlations with ovarian width (p = 0.015). The corpus luteum is also linked to fertility and P1-D13-bp was significantly correlated with corpus luteum diameter (p = 0.005). In conclusion, an indel mutation within the bovine ITGβ5 gene was identified, which was significantly associated with several ovarian and luteal traits.


2021 ◽  
Author(s):  
Lu Chen ◽  
Jingyun Luo ◽  
Minliang Jin ◽  
Ning Yang ◽  
Xiangguo Liu ◽  
...  

Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in the wild relatives of maize. Here, we characterize a high-density genomic variation map from ~700 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 65 million single nucleotide polymorphisms (SNPs), 8 million Insertion/Deletion (InDel) polymorphisms, and over one thousand novel inversions. The variation map reveals evidence of selection within taxa displaying novel adaptations such as perenniality and regrowth. We focus in detail on evidence of convergent adaptation in highland teosinte and temperate maize. This study not only indicates the key role of hormone related pathways in highland adaptation and flowering time related pathways in high latitude adaptation, but also identifies significant overlap in the genes underlying adaptations to both environments. To show how this data can identify useful genetic variants, we generated and characterized novel mutant alleles for two flowering time candidate genes. This work provides the most extensive sampling to date of the genetic diversity inherent in the genus Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Junjie Cui ◽  
Jiazhu Peng ◽  
Jiaowen Cheng ◽  
Kailin Hu

Abstract Background The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. Results Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines ‘47–2–1-1-3’ and ‘04–17,’ indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 ‘47–2–1-1-3’ × ‘04–17’ F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. Conclusions This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.


2021 ◽  
Author(s):  
Gen Pan ◽  
Zheng Li ◽  
Siqi Huang ◽  
Jie Tao ◽  
Yaliang Shi ◽  
...  

Abstract Background: Cannabis sativa L., a dioecious plant, derived from China, demonstrates important medicinal properties and economic value worldwide. Cannabis properties were usually harnessed depending on the sex of the plant. To analyze the genetic structure of Chinese cannabis and identify sex-linked makers, the genome-wide insertion-deletion (InDel) markers were designed and used. Results: In this study, a genome-wide analysis of insertion–deletion (InDel) polymorphisms was performed based on the recent genome sequences. In total, 47558 InDels were detected between the two varieties, and the length of InDels ranged from 4 bp to 87 bp. The most common InDels were tetranucleotides, followed by pentanucleotides. Chromosome 5 had the highest number of InDels among the cannabis chromosomes, while chromosome 10 had the lowest number. Additionally, a total of 47558 InDel markers were designed, and 84 primers evenly distributed in the cannabis genome were chosen for polymorphism analysis. A total of 38 primers exhibited polymorphisms among three accessions, and of the polymorphism primers, 14 biallelic primers were further used to analyse the genetic structure. A total of 39 fragments were detected, and the PIC value ranged from 0.1209 to 0.6351. According to the Indel markers as well as the flowering time, the 115 Chinese germplasms were divided in two subgroups, which were mainly composed of cultivars from the most north and south regions, respectively. Additional, the marker “ I1-10” was found to amplify two bands (398bp and 251bp) in the male plants, while a 389bp bands in female plants. Using this marker, the feminized and dioecious varieties can also be distinguished.Conclusion: This study will facilitate the genetic improvement and germplasm conservation of cannabis in China, and the sex-linked InDel markers will provide accurate sex identification strategies for cannabis breeding and production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yawo Mawunyo Nevame Adedze ◽  
Xia Lu ◽  
Yingchun Xia ◽  
Qiuyue Sun ◽  
Chofong G. Nchongboh ◽  
...  

AbstractInsertion and Deletion (InDel) are common features in genomes and are associated with genetic variation. The whole-genome re-sequencing data from two parents (X1 and X2) of the elite cucumber (Cucumis sativus) hybrid variety Lvmei No.1 was used for genome-wide InDel polymorphisms analysis. Obtained sequence reads were mapped to the genome reference sequence of Chinese fresh market type inbred line ‘9930’ and gaps conforming to InDel were pinpointed. Further, the level of cross-parents polymorphism among five pairs of cucumber breeding parents and their corresponding hybrid varieties were used for evaluating hybrid seeds purity test efficiency of InDel markers. A panel of 48 cucumber breeding lines was utilized for PCR amplification versatility and phylogenetic analysis of these markers. In total, 10,470 candidate InDel markers were identified for X1 and X2. Among these, 385 markers with more than 30 nucleotide difference were arbitrary chosen. These markers were selected for experimental resolvability through electrophoresis on an Agarose gel. Two hundred and eleven (211) accounting for 54.81% of markers could be validated as single and clear polymorphic pattern while 174 (45.19%) showed unclear or monomorphic genetic bands between X1 and X2. Cross-parents polymorphism evaluation recorded 68 (32.23%) of these markers, which were designated as cross-parents transferable (CPT) InDel markers. Interestingly, the marker InDel114 presented experimental transferability between cucumber and melon. A panel of 48 cucumber breeding lines including parents of Lvmei No. 1 subjected to PCR amplification versatility using CPT InDel markers successfully clustered them into fruit and common cucumber varieties based on phylogenetic analysis. It is worth noting that 16 of these markers were predominately associated to enzymatic activities in cucumber. These agarose-based InDel markers could constitute a valuable resource for hybrid seeds purity testing, germplasm classification and marker-assisted breeding in cucumber.


2021 ◽  
Author(s):  
Frederik Hendrickx ◽  
Zoë De Corte ◽  
Gontran Sonet ◽  
Steven M. Van Belleghem ◽  
Stephan Köstlbacher ◽  
...  

AbstractIn many species, individuals can develop into strikingly different morphs, which are determined by a simple Mendelian locus. How selection shapes loci that control complex phenotypic differences remains poorly understood. In the spider Oedothorax gibbosus, males either develop into a ‘hunched’ morph with conspicuous head structures or as a fast developing ‘flat’ morph with a female-like appearance. We show that the hunched-differs from the flat-determining allele by a hunch-specific genomic fragment of approximately 3 megabases. This fragment comprises dozens of genes that duplicated from genes found at different chromosomes. All functional duplicates, including doublesex - a key sexual differentiation regulatory gene, show male-specific expression, which illustrates their combined role as a masculinizing supergene. Our findings demonstrate how extensive indel polymorphisms and duplications of regulatory genes may contribute to the evolution of co-adapted gene clusters, sex-limited reproductive morphs, and the enigmatic evolution of exaggerated sexual traits in general.


Sign in / Sign up

Export Citation Format

Share Document